Show simple item record

Reaction Kinetics in Restricted Spaces

dc.contributor.authorKopelman, Raoulen_US
dc.contributor.authorKoo, Yong‐eunen_US
dc.date.accessioned2013-12-04T18:57:02Z
dc.date.available2013-12-04T18:57:02Z
dc.date.issued1991en_US
dc.identifier.citationKopelman, Raoul; Koo, Yong‐eun (1991). "Reaction Kinetics in Restricted Spaces." Israel Journal of Chemistry 31(2): 147-157. <http://hdl.handle.net/2027.42/101785>en_US
dc.identifier.issn0021-2148en_US
dc.identifier.issn1869-5868en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101785
dc.description.abstractReactions in restricted spaces rarely get stirred vigorously by convection and are thus controlled by diffusion. Furthermore, the compactness of the Brownian motion leads to both anomalous diffusion and anomalous reaction kinetics. Elementary binary reactions of the type A + A → Products, A + B → Products, and A + C → C + Products are discussed theoretically for both batch and steady‐state conditions. The anomalous reaction orders and time exponents (for the rate coefficients) are discussed for various situations. Global and local rate laws are related to particle distribution functions. Only Poissonian distributions guarantee the classical rate laws. Reactant self‐organization leads to interesting new phenomena. These are demonstrated by theory, simulations, and experiments. The correlation length of reactant production affects the self‐ordering length scale. These effects are demonstrated experimentally, including the stability of reactant segregation observed in chemical reactions in one‐dimensional spaces, e.g., capillaries and microcapillaries. The gap between the reactant A (cation) and B (anion) actually increases in time and extends over millimeters. Excellent agreement is found among theory, simulation, and experiment for the various scaling exponents.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.titleReaction Kinetics in Restricted Spacesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101785/1/199100016_ftp.pdf
dc.identifier.doi10.1002/ijch.199100016en_US
dc.identifier.sourceIsrael Journal of Chemistryen_US
dc.identifier.citedreferenceMandelbrot, B. B. Fractal Geometry of Nature; Freeman: San Francisco, 1983.en_US
dc.identifier.citedreferencePeacock‐Lopez, E.; Keizer, J. J. Chem. Phys. 1988, 88: 1997.en_US
dc.identifier.citedreferenceAnacker, L. W.; Kopelman, R. In Science at the John von Neumann National Supercomputer Center, 1989; Cook, G., Ed.; Consortium for Scientific Computing: Princeton, NJ, 1990;p. 29.en_US
dc.identifier.citedreferenceLuther, R.; Weigert, F. Z. Phys. Chem. 1905, 53: 385.en_US
dc.identifier.citedreferenceLieberman, K.; Harush, S.; Lewis, A.; Kopelman, R. Science 1990, 247: 59.en_US
dc.identifier.citedreferenceWeiss, G.; Kopelman, R.; Havlin, S. Phys. Rev. A 1989, 39: 466.en_US
dc.identifier.citedreferenceClement, E.; Kopelman, R.; Sander, L. M. Europhys. Lett. 1990, 11 ( 8 ): 707.en_US
dc.identifier.citedreferenceDoering, C. R.; Ben‐Avraham, D. Phys. Rev. A 1988, 38: 3035.en_US
dc.identifier.citedreferenceBen‐Avraham, D.; Doering, C. R. Phys. Rev. Lett. 1989, 62: 2563.en_US
dc.identifier.citedreferenceTorney, D. C.; McConnell, H. M. J. Phys. Chem. 1983, 87: 1441.en_US
dc.identifier.citedreferenceAnacker, L. W.; Parson, R. P.; Kopelman, R. J. Phys. Chem. 1985, 89: 4758.en_US
dc.identifier.citedreferenceBramson, M.; Griffeath, D. Ann. Probab. 1980, 8: 183.en_US
dc.identifier.citedreferenceToussaint, D.; Wilczek, F. J. Chem. Phys. 1983, 78: 2642.en_US
dc.identifier.citedreferenceZumofen, G.; Blumen, A.; Klafter, J. J. Chem. Phys. 1985, 83: 3198.en_US
dc.identifier.citedreferenceLindenberg, K.; West, B. J.; Kopelman, R. Phys. Rev. A 1990, 42: 890.en_US
dc.identifier.citedreferenceLi, L. Ph.D. Thesis; University of Michigan: Ann Arbor, 1989.en_US
dc.identifier.citedreferenceGalfi, L.; Racz, Z. Phys. Rev. A 1988, 38: 3151.en_US
dc.identifier.citedreferenceAnacker, L. W.; Kopelman, R. Phys. Rev. Lett. 1987, 58: 289; J. Phys. Chem. 1987, 91: 5555.en_US
dc.identifier.citedreferenceLindenberg, K.; West, B. J.; Kopelman, R. Phys. Rev. Lett. 1988, 60: 1777.en_US
dc.identifier.citedreferenceRacz, Z. Phys. Rev. Lett. 1985, 55: 1707.en_US
dc.identifier.citedreferenceWest, B. J.; Kopelman, R.; Lindenberg, K. J. Stat. Phys. 1989, 54: 1429.en_US
dc.identifier.citedreferenceNewhouse, J. S.; Kopelman, R. J. Chem. Phys. 1986, 85: 6804; J. Phys. Chem. 1988, 92: 1538.en_US
dc.identifier.citedreferenceDe Gennes, P. G. J. Chem. Phys. 1982, 76: 3316.en_US
dc.identifier.citedreferenceHavlin, S.; Ben‐Avraham, D. Adv. Phys. 1987, 36: 695; Rudnick, J.; Gaspari, G. Science 1987, 237: 384.en_US
dc.identifier.citedreference(a) Argyrakis, P.; Kopelman, R. J. Chem. Phys. 1980, 72: 3053. (b) Klymko, P. W.; Kopelman, R. J. Phys. Chem. 1983, 87: 4565.en_US
dc.identifier.citedreferenceKopelman, R. Science 1988, 241: 1620.en_US
dc.identifier.citedreferencePrasad, J.; Kopelman, R. Chem. Phys. Lett. 1989, 157: 535.en_US
dc.identifier.citedreferencePrasad, J.; Kopelman, R. J. Phys. Chem. 1987, 91: 265.en_US
dc.identifier.citedreferenceLi, C.‐S.; Kopelman, R. Macromolecules 1990, 23: 2223.en_US
dc.identifier.citedreferenceLi, C.‐S.; Kopelman, R. J. Phys. Chem. 1990, 94: 2135.en_US
dc.identifier.citedreferenceShi, Z.‐Y.; Li, C.‐S.; Kopelman, R. In Polymer Based Molecular Composites;Mark, J.E.; Schaefer, D.W., Eds.; Proceedings of Materials Research Society: Pittsburgh, 1989.en_US
dc.identifier.citedreferenceDrake, J. M.; Levitz, P.; Turro, N. J.; Nitsche, K. S.; Cassidy, K. F. J. Phys. Chem. 1988, 92: 4680.en_US
dc.identifier.citedreferenceFauman, E. B.; Kopelman, R. Comments Mol. Cell. Biophys. 1989, 6: 47.en_US
dc.identifier.citedreferenceDissado, L. A. Comments Mol. Cell. Biophys. 1987, 4: 143.en_US
dc.identifier.citedreferenceHoshen, J.; Kopelman, R. J. Chem. Phys. 1976, 65: 2817.en_US
dc.identifier.citedreferenceKlymko, P.; Kopelman, R. J. Phys. Chem. 1982, 86: 3686.en_US
dc.identifier.citedreferenceOvchinikov, A. A.; Zeldovich, Ya.B. Chem. Phys. 1978, 28: 215, and references cited therein. (b) Kuzovkov, V. N.; Kotomin, E. A. J. Phys. C 1984, 17: 2283.en_US
dc.identifier.citedreferenceAgranovich, V. M.; Galanin, M. D. Electronic Excitation Energy Transfer in Condensed Matter; North Holland: Amsterdam, 1982.en_US
dc.identifier.citedreference(a) Smoluchowski, M. V. Z. Phys. Chem. 1917, 92: 129. (b) Keizer, J. J. Phys. Chem. 1982, 86: 5052, and references cited therein.en_US
dc.identifier.citedreferenceKlafter, J.; Blumen, A.; Zumofen, G. J. Stat. Phys. 1984, 36: 561.en_US
dc.identifier.citedreferenceKopelman, R. J. Stat. Phys. 1986, 42: 185.en_US
dc.identifier.citedreferenceKang, K.; Redner, S. Phys. Rev. Lett. 1984, 52: 955.en_US
dc.identifier.citedreferenceAlexander, S.; Orbach, R. J. Phys. (Paris), Lett. 1982, 43: L625.en_US
dc.identifier.citedreferenceBlumen, A.; Klafter, J.; Zumofen, G. In Optical Spectroscopy of Glasses; Zschokke, I., Ed.; Reidel: Dordrecht, 1986; p. 199.en_US
dc.identifier.citedreferenceLindenberg, K.; West, B. J.; Kopelman, R. In Proceedings of Conference on Noise and Chaos in Nonlinear Dynamical Systems;Catelin, S.; Moss, E, Eds.; Cambridge University Press: London, 1990; p. 142.en_US
dc.identifier.citedreferenceClement, E.; Sander, L. M.; Kopelman, R. Phys. Rev. A 1989, 39: 6455.en_US
dc.identifier.citedreferenceClement, E.; Sander, L. M.; Kopelman, R. Phys. Rev. A 1989, 39: 6466.en_US
dc.identifier.citedreferenceClement, E.; Sander, L. M.; Kopelman, R. Phys. Rev. A 1989, 39: 6472.en_US
dc.identifier.citedreferenceHarmon, L. A.; Li, L.; Anacker, L. W.; Kopelman, R. Chem. Phys. Lett. 1989, 163: 463.en_US
dc.identifier.citedreferenceParus, S. J.; Kopelman, R. Phys. Rev. B 1989, 39: 889.en_US
dc.identifier.citedreferenceArgyrakis, P.; Kopelman, R. Phys. Rev. A 1990, 41: 2114; Phys. Rev. A 1990, 41: 2121.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.