Show simple item record

Cyclic reformation of a quasi‐parallel bow shock at Mercury: MESSENGER observations

dc.contributor.authorSundberg, Torbjörnen_US
dc.contributor.authorBoardsen, Scott A.en_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorUritsky, Vadim M.en_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorGershman, Daniel J.en_US
dc.contributor.authorRaines, Jim M.en_US
dc.contributor.authorZurbuchen, Thomas H.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.date.accessioned2013-12-04T18:57:04Z
dc.date.available2014-12-01T17:22:18Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationSundberg, Torbjörn ; Boardsen, Scott A.; Slavin, James A.; Uritsky, Vadim M.; Anderson, Brian J.; Korth, Haje; Gershman, Daniel J.; Raines, Jim M.; Zurbuchen, Thomas H.; Solomon, Sean C. (2013). "Cyclic reformation of a quasiâ parallel bow shock at Mercury: MESSENGER observations." Journal of Geophysical Research: Space Physics 118(10): 6457-6464.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101787
dc.description.abstractWe here document with magnetic field observations a passage of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft through Mercury's magnetosphere under conditions of a quasi‐parallel bow shock, i.e., when the direction of the upstream interplanetary magnetic field was within 45° of the bow shock normal. The spacecraft's fast transition of the magnetosheath and the steady solar wind conditions during the period analyzed allow both spatial and temporal properties of the shock crossing to be investigated. The observations show that the shock reformation process can be nearly periodic under stable solar wind conditions. Throughout the 25‐min‐long observation period, the pulsation duration deviated by at most ~10% from the average 10 s period measured. This quasiperiodicity allows us to study all aspects of the shock reconfiguration, including ultra‐low‐frequency waves in the upstream region and large‐amplitude magnetic structures observed in the vicinity of the magnetosheath‐solar wind transition region and inside the magnetosheath. We also show that bow shock reformation can be a substantial source of wave activity in the magnetosphere, on this occasion having given rise to oscillations in the magnetic field with peak‐to‐peak amplitudes of 40–50 nT over large parts of the dayside magnetosphere. The clean and cyclic behavior observed throughout the magnetosphere, the magnetosheath, and the upstream region indicates that the subsolar region was primarily influenced by a cyclic reformation of the shock front, rather than by a spatial and temporal patchwork of short large‐amplitude magnetic structures, as is generally the case at the terrestrial bow shock under quasi‐parallel conditions. Key Points We document the behavior of a quasi‐parallel bow shock at Mercury Reformation of the bow shock can be nearly periodic The bow shock reformation leads to wave activity in the magnetosphereen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBow Shocken_US
dc.subject.otherMercuryen_US
dc.subject.otherMESSENGERen_US
dc.titleCyclic reformation of a quasi‐parallel bow shock at Mercury: MESSENGER observationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101787/1/jgra50602.pdf
dc.identifier.doi10.1002/jgra.50602en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceHasegawa, A. ( 1969 ), Drift mirror instability in the magnetosphere, Phys. Fluids, 12, 2642 – 2650, doi: 10.1063/1.1692407.en_US
dc.identifier.citedreferenceFairfield, D. H., and K. W. Behannon ( 1976 ), Bow shock and magnetosheath waves at Mercury, J. Geophys. Res., 81, 3897 – 3906, doi: 10.1029/JA081i022p03897.en_US
dc.identifier.citedreferenceFairfield, D. H., W. Baumjohann, G. Paschmann, H. Lühr, and D. G. Sibeck ( 1990 ), Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95, 3773 – 3786, doi: 10.1029/JA095iA04p03773.en_US
dc.identifier.citedreferenceGershman, D. J., T. H. Zurbuchen, L. A. Fisk, J. A. Gilbert, J. M. Raines, B. J. Anderson, C. W. Smith, H. Korth, and S. C. Solomon ( 2012 ), Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER, J. Geophys. Res., 117, A00M02, doi: 10.1029/2012JA017829.en_US
dc.identifier.citedreferenceGiacalone, J., S. J. Schwartz, and D. Burgess ( 1993 ), Observations of suprathermal ions in association with SLAMS, Geophys. Res. Lett., 20, 149 – 152, doi: 10.1029/93GL00067.en_US
dc.identifier.citedreferenceHerčík, D., P. M. Trávníček, J. R. Johnson, E.‐H. Kim, and P. Hellinger ( 2013 ), Mirror mode structures in the asymmetric Hermean magnetosheath: Hybrid simulations, J. Geophys. Res. Space Physics, 118, 405 – 417, doi: 10.1029/2012JA018083.en_US
dc.identifier.citedreferenceKrauss‐Varban, D., F. G. E. Pantellini, and D. Burgess ( 1995 ), Electron dynamics and whistler waves at quasi‐perpendicular shocks, Geophys. Res. Lett., 22, 2091 – 2094, doi: 10.1029/95GL01782.en_US
dc.identifier.citedreferenceLe, G., P. J. Chi, X. Blanco‐Cano, S. Boardsen, J. A. Slavin, and B. J. Anderson ( 2013 ), Upstream ultra‐low frequency waves in Mercury's foreshock region: MESSENGER magnetic field observations, J. Geophys. Res. Space Physics, 118, 2809 – 2823, doi: 10.1002/jgra.50342.en_US
dc.identifier.citedreferenceLefebvre, B., Y. Seki, S. J. Schwartz, C. Mazelle, and E. A. Lucek ( 2009 ), Reformation of an oblique shock observed by Cluster, J. Geophys. Res., 114, A11107, doi: 10.1029/2009JA014268.en_US
dc.identifier.citedreferenceLucek, E. A., T. S. Horbury, M. W. Dunlop, P. J. Cargill, S. J. Schwartz, A. Balogh, P. Brown, C. Carr, K.‐H. Fornacon, and E. Georgescu ( 2002 ), Cluster magnetic field observations at a quasi‐parallel bow shock, Ann. Geophys., 20, 1699 – 1710.en_US
dc.identifier.citedreferenceLucek, E. A., T. S. Horbury, I. Dandouras, and H. Rème ( 2008 ), Cluster observations of the Earth's quasi‐parallel bow shock, J. Geophys. Res., 113, A07S02, doi: 10.1029/2007JA012756.en_US
dc.identifier.citedreferenceMasters, A., J. A. Slavin, G. A. DiBraccio, T. Sundberg, R. M. Winslow, C. L. Johnson, B. J. Anderson, and H. Korth ( 2013 ), A comparison of magnetic overshoots at the bow shocks of Mercury and Saturn, J. Geophys. Res. Space Physics, 118, 4381 – 4390, doi: 10.1002/jgra.50428.en_US
dc.identifier.citedreferenceMcIlwain, C. E. ( 1961 ), Coordinates for mapping the distribution of magnetically trapped particles, J. Geophys. Res., 66, 3681 – 3691, doi: 10.1029/JZ066i011p03681.en_US
dc.identifier.citedreferenceOrlowski, D. S., G. K. Crawford, and C. R. Russell ( 1990 ), Upstream waves at Mercury, Venus and Earth: Comparison of the properties of one Hertz waves, Geophys. Res. Lett., 17, 2293 – 2296, doi: 10.1029/GL017i013p02293.en_US
dc.identifier.citedreferencePaschmann, G., N. Sckopke, S. J. Bame, and J. T. Gosling ( 1982 ), Observations of gyrating ions in the foot of the nearly perpendicular bow shock, Geophys. Res. Lett., 9, 881 – 884, doi: 10.1029/GL009i008p00881.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.identifier.citedreferenceSchwartz, S. J. ( 1991 ), Magnetic field structures and related phenomena at quasi‐parallel shocks, Adv. Space Res., 11, 231 – 240, doi: 10.1016/0273‐1177(91)90039‐M.en_US
dc.identifier.citedreferenceSchwartz, S. J., and D. Burgess ( 1991 ), Quasi‐parallel shocks: A patchwork of three‐dimensional structures, Geophys. Res. Lett., 18, 373 – 376, doi: 10.1029/91GL00138.en_US
dc.identifier.citedreferenceSchwartz, S. J., D. Burgess, W. P. Wilkinson, R. L. Kessel, M. Dunlop, and H. Lühr ( 1992 ), Observations of short large‐amplitude magnetic structures at a quasi‐parallel shock, J. Geophys. Res., 97, 4209 – 4227, doi: 10.1029/91JA02581.en_US
dc.identifier.citedreferenceSckopke, N., G. Paschmann, A. L. Brinca, C. W. Carlson, and H. Lühr ( 1990 ), Ion thermalization in quasi‐perpendicular shocks involving reflected ions, J. Geophys. Res., 95, 6337 – 6352, doi: 10.1029/JA095iA05p06337.en_US
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1981 ), Solar wind flow about the terrestrial planets, 1. Modeling bow shock position and shape, J. Geophys. Res., 86, 11,401 – 11,418, doi: 10.1029/JA086iA13p11401.en_US
dc.identifier.citedreferenceSundberg, T., S. A. Boardsen, J. A. Slavin, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, and S. C. Solomon ( 2012 ), MESSENGER orbital observations of large‐amplitude Kelvin‐Helmholtz waves at Mercury's magnetopause, J. Geophys. Res., 117, A04216, doi: 10.1029/2011JA017268.en_US
dc.identifier.citedreferenceThomsen, M. F., J. T. Gosling, S. J. Bame, T. G. Onsager, and C. T. Russell ( 1990 ), Two‐state ion heating at quasi‐parallel shocks, J. Geophys. Res., 95, 6363 – 6374, doi: 10.1029/JA095iA05p06363.en_US
dc.identifier.citedreferenceTsubouchi, K., and B. Lembège ( 2004 ), Full particle simulations of short large‐amplitude magnetic structures (SLAMS) in quasi‐parallel shocks, J. Geophys. Res., 109, A02114, doi: 10.1029/2003JA010014.en_US
dc.identifier.citedreferenceWinske, D., N. Omidi, K. B. Quest, and V. A. Thomas ( 1990 ), Re‐forming supercritical quasi‐parallel shocks, 2. Mechanism for wave generation and front re‐formation, J. Geophys. Res., 95, 18,821 – 18,832, doi: 10.1029/JA095iA11p18821.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceAbraham‐Shrauner, B. ( 1972 ), Determination of magnetohydrodynamic shock normals, J. Geophys. Res., 77, 736 – 739, doi: 10.1029/JA077i004p00736.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556.en_US
dc.identifier.citedreferenceArcher, M. O., and T. S. Horbury ( 2013 ), Magnetosheath dynamic pressure enhancements: Occurrence and typical properties, Ann. Geophys., 31, 319 – 331, doi: 10.5194/angeo‐31‐319‐2013.en_US
dc.identifier.citedreferenceArcher, M. O., T. S. Horbury, and J. P. Eastwood ( 2012 ), Magnetosheath pressure pulses: Generation downstream of the bow shock from solar wind discontinuities, J. Geophys. Res., 117, A05228, doi: 10.1029/2011JA017468.en_US
dc.identifier.citedreferenceBale, S. D., et al. ( 2005 ), Quasi‐perpendicular shock structure and processes, Space Sci. Rev., 118, 161 – 203, doi: 10.1007/s11214‐005‐3827‐0.en_US
dc.identifier.citedreferenceBehlke, R., M. André, S. C. Buchert, A. Vaivads, A. I. Eriksson, E. A. Lucek, and A. Balogh ( 2003 ), Multi‐point electric field measurements of short large‐amplitude magnetic structures (SLAMS) at the Earth's quasi‐parallel bow shock, Geophys. Res. Lett., 30 ( 4 ), 1177, doi: 10.1029/2002GL015871.en_US
dc.identifier.citedreferenceBehlke, R., M. André, S. D. Bale, J. S. Pickett, C. A. Cattell, E. A. Lucek, and A. Balogh ( 2004 ), Solitary structures associated with short large‐amplitude magnetic structures (SLAMS) upstream of the Earth's quasi‐parallel bow shock, Geophys. Res. Lett., 31, L16805, doi: 10.1029/2004GL019524.en_US
dc.identifier.citedreferenceBurgess, D. ( 1989 ), Cyclic behavior at quasi‐parallel collisionless shocks, Geophys. Res. Lett., 16, 345 – 348, doi: 10.1029/GL016i005p00345.en_US
dc.identifier.citedreferenceBurgess, D., et al. ( 2005 ), Quasi‐parallel shock structure and processes, Space Sci. Rev., 118, 205 – 222, doi: 10.1007/s11214‐005‐3832‐3.en_US
dc.identifier.citedreferenceDubouloz, N., and M. Scholer ( 1993 ), On the origin of short large‐amplitude magnetic structures upstream of quasi‐parallel collisionless shocks, Geophys. Res. Lett., 20, 547 – 550, doi: 10.1029/93GL00803.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.