Show simple item record

Evidence for constriction and Pliocene acceleration of east‐west extension in the North Lunggar rift region of west central Tibet

dc.contributor.authorSundell, Kurt E.en_US
dc.contributor.authorTaylor, Michael H.en_US
dc.contributor.authorStyron, Richard H.en_US
dc.contributor.authorStockli, Daniel F.en_US
dc.contributor.authorKapp, Paulen_US
dc.contributor.authorHager, Christianen_US
dc.contributor.authorLiu, Deliangen_US
dc.contributor.authorDing, Linen_US
dc.date.accessioned2013-12-04T18:57:45Z
dc.date.available2014-10-06T19:17:42Zen_US
dc.date.issued2013-09en_US
dc.identifier.citationSundell, Kurt E.; Taylor, Michael H.; Styron, Richard H.; Stockli, Daniel F.; Kapp, Paul; Hager, Christian; Liu, Deliang; Ding, Lin (2013). "Evidence for constriction and Pliocene acceleration of east‐west extension in the North Lunggar rift region of west central Tibet." Tectonics 32(5): 1454-1479. <http://hdl.handle.net/2027.42/101841>en_US
dc.identifier.issn0278-7407en_US
dc.identifier.issn1944-9194en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101841
dc.description.abstractThe active north trending North Lunggar rift in west central southern Tibet exposes an extensional metamorphic core complex bounded by an east dipping low‐angle normal fault. Apatite and zircon (U‐Th)/He thermochronology and thermal modeling of the North Lunggar rift document a minimum timing for rift inception at >10 Ma and rapid footwall exhumation between 5 and 2 Ma. Miocene footwall cooling and exhumation rates were initially slow to moderate at <50°C Ma −1 and <1 mm a −1 , followed by increased Pliocene rates as high as >400°C Ma −1 and 4–10 mm a −1 . Footwall isotherms were significantly compressed during rapid exhumation resulting in an elevated transient geothermal gradient between 50 and 90°C km −1 . The minimum magnitude of horizontal extension for the North Lunggar rift is 8.1–12.8 km; maximum is 15–20 km, less in the south at ~10 km. Mean Pliocene extension rate is 1.2–2.4 mm a −1 in the ~120° direction. Results for the North Lunggar rift are similar in magnitude, rate, and orientation of slip to the kinematically linked Lamu Co dextral strike‐slip fault to the north. This suggests a state of constrictional strain during Pliocene time along this stretch of the Bangong‐Nujiang suture from which the Lamu Co fault emanates. The onset of extension in this region may be explained by crustal thickening and gravitational orogenic collapse, followed by accelerated rifting resulting from localized crustal stretching and increased magmatic activity, potentially driven by the position and northward extent of underthrusting Indian lithosphere. Key Points The active North Lunggar rift, south Tibet, initiated at >10 Ma, 5–2 Ma. Minimum 8.1–12.8 km extension; mean Pliocene rate 1.2–2.4 mm/a. Magnitude, rate, and orientation of slip suggest regional constriction.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherNational Bureau of Standardsen_US
dc.subject.otherTransient Geothermal Gradienten_US
dc.subject.otherTibeten_US
dc.subject.otherNorth Lunggaren_US
dc.subject.otherRift Accelerationen_US
dc.subject.otherLow‐Angle Normal Faultingen_US
dc.subject.other(U‐Th)/He Thermochronologyen_US
dc.titleEvidence for constriction and Pliocene acceleration of east‐west extension in the North Lunggar rift region of west central Tibeten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101841/1/Auxiliary_Material_B2_Analytical.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101841/2/Auxiliary_Material_A2_Analytical.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101841/3/Auxiliary_Material_A1_Data_Table_A1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101841/4/tect20086.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101841/5/Auxiliary_Material_B1_Data_Table_B1.pdf
dc.identifier.doi10.1002/tect.20086en_US
dc.identifier.sourceTectonicsen_US
dc.identifier.citedreferenceRoyden, L. ( 1996 ), Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust, J. Geophys. Res., 101 ( B8 ), 17,679 – 17,706.en_US
dc.identifier.citedreferenceTakeshita, T., and A. Yamaji ( 1990 ), Acceleration of continental rifting due to a thermomechanical instability, Tectonophysics, 181 ( 1 ), 307 – 320.en_US
dc.identifier.citedreferenceTaylor, M., and G. Peltzer ( 2006 ), Current slip rates on conjugate strike‐slip faults in central Tibet using synthetic aperture radar interferometry, J. Geophys. Res., 111, B12402, doi: 10.1029/2005JB004014.en_US
dc.identifier.citedreferenceTaylor, M., and A. Yin ( 2009 ), Active structures of the Himalayan‐Tibetan orogen and their relationships to earthquake distribution, contemporary strain field, and Cenozoic volcanism, Geosphere, 5 ( 3 ), 199 – 214.en_US
dc.identifier.citedreferenceTaylor, M., A. Yin, F. Ryerson, P. Kapp, and L. Ding ( 2003 ), Conjugate strike‐slip faulting along the Bangong‐Nujiang suture zone accommodates coeval east–west extension and north–south shortening in the interior of the Tibetan Plateau, Tectonics, 22 ( 4 ), 1044, doi: 10.1029/2002TC001361.en_US
dc.identifier.citedreferenceTeyssier, C., and D. L. Whitney ( 2002 ), Gneiss domes and orogeny, Geology, 30 ( 12 ), 1139 – 1142.en_US
dc.identifier.citedreferenceThiede, R., J. Arrowsmith, B. Bookhagen, M. McWilliams, E. Sobel, and M. Strecker ( 2006 ), Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India, Bull. Geol. Soc. Am., 118 ( 5–6 ), 635 – 650.en_US
dc.identifier.citedreferenceTirel, C., J. P. Brun, and E. Burov ( 2008 ), Dynamics and structural development of metamorphic core complexes, J. Geophys. Res., 113, B04403, doi: 10.1029/2005JB003694.en_US
dc.identifier.citedreferenceTucholke, B. E., J. Lin, and M. C. Kleinrock ( 1998 ), Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge, J. Geophys. Res., 103 ( B5 ), 9857 – 9866.en_US
dc.identifier.citedreferencevan Hinsbergen, D. J. J., B. Steinberger, P. V. Doubrovine, and R. Gassmoller ( 2011 ), Acceleration and deceleration of India‐Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision, J. Geophys. Res., 116, B06101, doi: 10.1029/2010JB008051.en_US
dc.identifier.citedreferenceVermeesch, P., D. Seward, C. Latkoczy, M. Wipf, D. Günther, and H. Baur ( 2007 ), α‐Emitting mineral inclusions in apatite, their effect on (U–Th)/He ages, and how to reduce it, Geochim. Cosmochim. Acta, 71 ( 7 ), 1737 – 1746.en_US
dc.identifier.citedreferenceWang, J., X. Hu, L. Jansa, and Z. Huang ( 2011 ), Provenance of the Upper Cretaceous–Eocene deep‐water sandstones in Sangdanlin, southern Tibet: Constraints on the timing of initial India‐Asia collision, J. Geol., 119 ( 3 ), 293 – 309.en_US
dc.identifier.citedreferenceWernicke, B., and G. Axen ( 1988 ), On the role of isostasy in the evolution of normal fault systems, Geology, 16 ( 9 ), 848 – 851.en_US
dc.identifier.citedreferenceWhitney, D. L., C. Teyssier, P. Rey, and W. R. Buck ( 2013 ), Continental and oceanic core complexes, Geol. Soc. Am. Bull., doi: 10.1130/B30754.1.en_US
dc.identifier.citedreferenceWhittington, A. G., A. M. Hofmeister, and P. I. Nábělek ( 2009 ), Temperature‐dependent thermal diffusivity of the Earth's crust and implications for magmatism, Nature, 458 ( 7236 ), 319 – 321.en_US
dc.identifier.citedreferenceWilliams, H., S. Turner, S. Kelley, and N. Harris ( 2001 ), Age and composition of dikes in Southern Tibet: New constraints on the timing of east–west extension and its relationship to postcollisional volcanism, Geology, 29 ( 4 ), 339 – 342.en_US
dc.identifier.citedreferenceWolf, R. A., K. A. Farley, and L. T. Silver ( 1996 ), Helium diffusion and low‐temperature thermochronometry of apatite, Geochimica Et Cosmochimica Acta, 60 ( 21 ), 4231 – 4240.en_US
dc.identifier.citedreferenceWolf, R. A., K. A. Farley, and D. M. Kass ( 1998 ), Modeling of the temperature sensitivity of the apatite (U‐Th)/He thermochronometer, Chem. Geol., 148 ( 1–2 ), 105 – 114.en_US
dc.identifier.citedreferenceWolfe, M. R., and D. F. Stockli ( 2010 ), Zircon (U‐Th)/He thermochronometry in the KTB drill hole, Germany, and its implications for bulk He diffusion kinetics in zircon, Earth Planet. Sci. Lett., 295 ( 1–2 ), 69 – 82.en_US
dc.identifier.citedreferenceWoodruff, W. H., B. K. Horton, P. Kapp, and D. F. Stockli ( 2013 ), Late Cenozoic evolution of the Lunggar extensional basin, Tibet: Implications for basin growth and exhumation in hinterland plateaus, Geol. Soc. Am. Bull., 125, 343 – 358.en_US
dc.identifier.citedreferenceYin, A. ( 2000 ), Mode of Cenozoic east–west extension in Tibet suggesting a common origin of rifts in Asia during the Indo‐Asian collision, J. Geophys. Res., 105 ( B9 ), 21,745 – 721,759, doi: 10.1029/2000JB900168.en_US
dc.identifier.citedreferenceYin, A. ( 2010 ), Cenozoic tectonic evolution of Asia: A preliminary synthesis, Tectonophysics, 488 ( 1 ), 293 – 325.en_US
dc.identifier.citedreferenceYin, A., and T. M. Harrison ( 2000 ), Geologic evolution of the Himalayan‐Tibetan orogen, Annu. Rev. Earth Planet. Sci., 28, 211 – 280.en_US
dc.identifier.citedreferenceYin, A., and M. H. Taylor ( 2011 ), Mechanics of V‐shaped conjugate strike‐slip faults and the corresponding continuum mode of continental deformation, Geol. Soc. Am. Bull., 123 ( 9–10 ), 1798 – 1821.en_US
dc.identifier.citedreferenceYin, A., T. M. Harrison, F. Ryerson, W. Chen, W. Kidd, and P. Copeland ( 1994 ), Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet, J. Geophys. Res., 99 ( 18 ), 175 – 118.en_US
dc.identifier.citedreferenceZhang, P. Z., Z. Shen, M. Wang, W. J. Gan, R. Bürgmann, and P. Molnar ( 2004 ), Continuous deformation of the Tibetan Plateau from global positioning system data, Geology, 32 ( 9 ), 809 – 812.en_US
dc.identifier.citedreferenceZhang, H., N. Harris, R. Parrish, S. Kelley, L. Zhang, N. Rogers, T. Argles, and J. King ( 2004 ), Causes and consequences of protracted melting of the mid‐crust exposed in the North Himalayan antiform, Earth Planet. Sci. Lett., 228 ( 1 ), 195 – 212.en_US
dc.identifier.citedreferenceZhu, B., W. S. F. Kidd, D. B. Rowley, B. S. Currie, and N. Shafique ( 2005 ), Age of initiation of the India‐Asia collision in the east‐central Himalaya, J. Geol., 113, 265 – 285.en_US
dc.identifier.citedreferenceZhu, D.‐C., Z.‐D. Zhao, Y. Niu, X.‐X. Mo, S.‐L. Chung, Z.‐Q. Hou, L.‐Q. Wang, and F.‐Y. Wu ( 2011 ), The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth, Earth Planet. Sci. Lett., 301, 241 – 255.en_US
dc.identifier.citedreferenceConey, P., and T. Harms ( 1984 ), Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression, Geology, 12 ( 9 ), 550 – 554.en_US
dc.identifier.citedreferenceCopley, A., J. P. Avouac, and B. P. Wernicke ( 2011 ), Evidence for mechanical coupling and strong Indian lower crust beneath southern Tibet, Nature, 472 ( 7341 ), 79 – 81, doi: 10.1038/nature09926.en_US
dc.identifier.citedreferenceDeCelles, P. G., D. M. Robinson, and G. Zandt ( 2002 ), Implications of shortening in the Himalayan fold‐thrust belt for uplift of the Tibetan Plateau, Tectonics, 21 ( 6 ), doi: 10.1029/2001TC001322.en_US
dc.identifier.citedreferenceDeCelles, P., P. Kapp, J. Quade, and G. Gehrels ( 2011 ), Oligocene‐Miocene Kailas basin, southwestern Tibet: Record of postcollisional upper‐plate extension in the Indus‐Yarlung suture zone, Bull. Geol. Soc. Am., 123 ( 7–8 ), 1337 – 1362.en_US
dc.identifier.citedreferenceDewane, T., D. Stockli, C. Hager, M. Taylor, L. Ding, J. Lee, and S. Wallis ( 2006 ), Timing of Cenozoic EW extension in the Tangra Yum Co‐Kung Co rift, south‐central Tibet, paper presented at American Geophysical Union, Fall Meeting (December 11–15, 2006), San Francisco.en_US
dc.identifier.citedreferenceAbramowitz, M., and I. Stegun ( 1970 ), Tables of Mathematical Functions, National Bureau of Standards, Washington.en_US
dc.identifier.citedreferenceAllégre, C., V. Courtillot, P. Tapponnier, A. Hirn, M. Mattauer, C. Coulon, J. Jaeger, J. Achache, U. Schärer, and J. Marcoux ( 1984 ), Structure and evolution of the Himalaya‐Tibet orogenic belt, Nature, 307, 17 – 22, doi: 10.1038/307017a0.en_US
dc.identifier.citedreferenceArmijo, R., P. Tapponnier, J. Mercier, and H. Tong‐Lin ( 1986 ), Quaternary extension in southern Tibet: Field observations and tectonic implications, J. Geophys. Res., 91, 13,803 – 13,872, doi: 10.1029/JB091iB14p13803.en_US
dc.identifier.citedreferenceArmijo, R., P. Tapponnier, and H. Tonglin ( 1989 ), Late Cenozoic dextral strike‐slip faulting in southern Tibet, J. Geophys. Res., 94 ( B3 ), 2787 – 2838, doi: 10.1029/JB094iB03p02787.en_US
dc.identifier.citedreferenceAxen, G. J., and J. M. Bartley ( 1997 ), Field tests of rolling hinges: Existence, mechanical types, and implications for extensional tectonics, J. Geophys. Res., 102 ( B9 ), 20,515 – 20,537, doi: 10.1029/97JB01355.en_US
dc.identifier.citedreferenceBird, P. ( 1991 ), Lateral extrusion of lower crust from under high topography in the isostatic limit, J. Geophys. Res., 96 ( B6 ), 10,275 – 10,286, doi: 10.1029/91JB00370.en_US
dc.identifier.citedreferenceBlisniuk, P., B. Hacker, J. Glodny, L. Ratschbacher, S. Bi, Z. Wu, M. McWilliams, and A. Calvert ( 2001 ), Normal faulting in central Tibet since at least 13.5 Myr ago, Nature, 412 ( 6847 ), 628 – 632, doi: 10.1038/35088045.en_US
dc.identifier.citedreferenceBlock, L., and L. Royden ( 1990 ), Core complex geometries and regional scale flow in the lower crust, Tectonics, 9 ( 4 ), 557 – 567, doi: 10.1029/TC009i004p00557.en_US
dc.identifier.citedreferenceBuck, W. ( 1988 ), Flexural rotation of normal faults, Tectonics, 7 ( 5 ), 959 – 973, doi: 10.1029/TC007i005p00959.en_US
dc.identifier.citedreferenceBuck, W. ( 1991 ), Modes of continental lithospheric extension, J. Geophys. Res., 96 ( B12 ), 20,161 – 20,178, doi: 10.1029/91JB01485.en_US
dc.identifier.citedreferenceBurchfiel, B. C., Z. Chen, L. H. Royden, Y. Liu, and C. Deng ( 1991 ), Extensional development of Gabo valley, southern Tibet, Tectonophysics, 194 ( 1 ), 187 – 193, doi: 10.1016/0040‐1951(91)90283‐X.en_US
dc.identifier.citedreferenceBürgmann, R., and G. Dresen ( 2008 ), Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations, Annu. Rev. Earth Planet. Sci., 36, 531 – 567, doi: 10.1146/annurev.earth.36.031207.124326.en_US
dc.identifier.citedreferenceCarslaw, H. S., and J. C. Jaeger ( 1959 ), Conduction of Heat in Solids, 2nd ed., 1 pp., Clarendon Press, Oxford.en_US
dc.identifier.citedreferenceCheng, J., and G. Xu ( 1987 ), Geologic map of the Ritu region with report, Tibetan Bureau of Geological and Mineral Resources, 598.en_US
dc.identifier.citedreferenceClark, M. K., and L. H. Royden ( 2000 ), Topographic ooze: Building the eastern margin of Tibet by lower crustal flow, Geology, 28 ( 8 ), 703 – 706.en_US
dc.identifier.citedreferenceClark, M. K., K. A. Farley, D. Zheng, Z. Wang, and A. R. Duvall ( 2010 ), Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages, Earth Planet. Sci. Lett., 296 ( 1 ), 78 – 88.en_US
dc.identifier.citedreferenceColeman, M., and K. Hodges ( 1995 ), Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east–west extension, Nature, 374 ( 6517 ), 49 – 52, doi: 10.1038/374049a0.en_US
dc.identifier.citedreferenceDewey, J. ( 1980 ), Episodicity, sequence and style at convergent plate boundaries, in The continental crust and its mineral deposits.en_US
dc.identifier.citedreferenceDewey, J. ( 1988 ), Extensional collapse of orogens, Tectonics, 7 ( 6 ), 1123 – 1139, doi: 10.1029/TC007i006p01123.en_US
dc.identifier.citedreferenceDewey, J., R. Shackleton, C. Chengfa, and S. Yiyin ( 1988 ), The tectonic evolution of the Tibetan Plateau, Phil. Trans. Roy. Soc. Lond. Math Phys. Sci., 327 ( 1594 ), 379 – 413.en_US
dc.identifier.citedreferenceDing, L., P. Kapp, D. Zhong, and W. Deng ( 2003 ), Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction, J. Petrol., 44 ( 10 ), 1833 – 1865.en_US
dc.identifier.citedreferenceEdwards, M., and T. Harrison ( 1997 ), When did the roof collapse? Late Miocene north–south extension in the high Himalaya revealed by Th‐Pb monazite dating of the Khula Kangri granite, Geology, 25 ( 6 ), 543 – 546.en_US
dc.identifier.citedreferenceEhlers, T. A. ( 2005 ), Crustal thermal processes and the interpretation of thermochronometer data, Rev. Mineral. Geochem., 58 ( 1 ), 315 – 350.en_US
dc.identifier.citedreferenceEhlers, T., and K. Farley ( 2003 ), Apatite (U‐Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes, Earth Planet. Sci. Lett., 206 ( 1–2 ), 1 – 14.en_US
dc.identifier.citedreferenceEhlers, T., P. Armstrong, and D. Chapman ( 2001 ), Normal fault thermal regimes and the interpretation of low‐temperature thermochronometers, Phys. Earth Planet. Inter., 126 ( 3 ), 179 – 194.en_US
dc.identifier.citedreferenceEhlers, T. A., T. Chaudhri, S. Kumar, C. W. Fuller, S. D. Willett, R. A. Ketcham, M. T. Brandon, D. X. Belton, B. P. Kohn, and A. J. W. Gleadow ( 2005 ), Computational tools for low‐temperature thermochronometer interpretation, Rev. Mineral. Geochem., 58 ( 1 ), 589 – 622.en_US
dc.identifier.citedreferenceEngland, P. C., and G. A. Houseman ( 1988 ), The mechanics of the Tibetan Plateau, Phil. Trans. Roy. Soc. Lond. Math Phys. Sci., 326 ( 1589 ), 301 – 320.en_US
dc.identifier.citedreferenceEngland, P., and G. Houseman ( 1989 ), Extension during continental convergence, with application to the Tibetan Plateau, J. Geophys. Res., 94, 17,561 – 17,579.en_US
dc.identifier.citedreferenceFarley, K. ( 2002 ), (U‐Th)/He dating: Techniques, calibrations, and applications, Rev. Mineral. Geochem., 47 ( 1 ), 819 – 844.en_US
dc.identifier.citedreferenceFarley, K., R. Wolf, and L. Silver ( 1996 ), The effects of long alpha‐stopping distances on (U‐Th)/He ages, Geochim. Cosmochim. Acta, 60 ( 21 ), 4223 – 4229.en_US
dc.identifier.citedreferenceFielding, E., B. Isacks, M. Barazangi, and C. Duncan ( 1994 ), How flat is Tibet?, Geology, 22 ( 2 ), 163 – 167.en_US
dc.identifier.citedreferenceFitzgerald, P. G., E. M. Duebendorfer, J. E. Faulds, and P. O'Sullivan ( 2009 ), South Virgin‐White Hills detachment fault system of SE Nevada and NW Arizona: Applying apatite fission track thermochronology to constrain the tectonic evolution of a major continental detachment fault, Tectonics, 28, doi: 10.1029/2007TC002194.en_US
dc.identifier.citedreferenceFlowers, R., R. Ketcham, D. Shuster, and K. Farley ( 2009 ), Apatite (U‐Th)/He thermochronometry using a radiation damage accumulation and annealing model, Geochim. Cosmochim. Acta, 73 ( 8 ), 2347 – 2365.en_US
dc.identifier.citedreferenceFrancheteau, J., C. Jaupart, S. X. Jie, K. Wen‐Hua, L. De‐Lu, B. Jia‐Chi, W. Hung‐Pin, and D. Hsia‐Yeu ( 1984 ), High heat flow in southern Tibet, Nature, 307, 32 – 36.en_US
dc.identifier.citedreferenceFrederiksen, S., and J. Braun ( 2001 ), Numerical modelling of strain localisation during extension of the continental lithosphere, Earth Planet. Sci. Lett., 188 ( 1 ), 241 – 251.en_US
dc.identifier.citedreferenceFriedrich, A. M., B. P. Wernicke, N. A. Niemi, R. A. Bennett, and J. L. Davis ( 2003 ), Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years, J. Geophys. Res., 108 ( B4 ), 2199, doi: 10.1029/2001JB000682.en_US
dc.identifier.citedreferenceGao, Y., Z. Hou, B. S. Kamber, R. Wei, X. Meng, and R. Zhao ( 2007 ), Lamproitic rocks from a continental collision zone: Evidence for recycling of subducted Tethyan oceanic sediments in the mantle beneath southern Tibet, J. Petrol., 48 ( 4 ), 729 – 752.en_US
dc.identifier.citedreferenceGarzanti, E., A. Baud, and G. Mascle ( 1987 ), Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India), Geodinamica Acta, 1 ( 4–5 ), 297 – 312.en_US
dc.identifier.citedreferenceGarzione, C., D. Dettman, J. Quade, P. Decelles, and R. Butler ( 2000 ), High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal, Geology, 28 ( 4 ), 339 – 342.en_US
dc.identifier.citedreferenceGehrels, G. E., V. A. Valencia, and J. Ruiz ( 2008 ), Enhanced precision, accuracy, efficiency, and spatial resolution of U‐Pb ages by laser ablation‐multicollector‐inductively coupled plasma‐mass spectrometry, Geochem. Geophys. Geosyst., 9, Q03017, doi: 10.1029/2007GC001805.en_US
dc.identifier.citedreferenceGirardeau, J., J. Marcoux, C. Allégre, J. Bassoullet, T. Youking, X. Xuchang, Z. Yougong, and W. Xibin ( 1984 ), Tectonic environment and geodynamic significance of the Neo‐Cimmerian Donqiao ophiolite, Bangong‐Nujiang suture zone, Tibet, Nature, 307, 27 – 31.en_US
dc.identifier.citedreferenceGottardi, R., C. Teyssier, A. Mulch, T. Vennemann, and M. Wells ( 2011 ), Preservation of an extreme transient geotherm in the Raft River detachment shear zone, Geology, 39 ( 8 ), 759 – 762.en_US
dc.identifier.citedreferenceGreen, O. R., M. P. Searle, R. I. Corfield, and R. M. Corfield ( 2008 ), Cretaceous‐Tertiary carbonate platform evolution and the age of the India‐Asia collision along the Ladakh Himalaya (Northwest India), J. Geol., 116, 331 – 353.en_US
dc.identifier.citedreferenceTwiss, R., and E. Moores ( 2007 ), Structural Geology, 736 pp., WH Freeman and Company, New York.en_US
dc.identifier.citedreferenceHager, C., and D. F. Stockli ( 2009 ), A new MATLAB©‐based helium modeling package (“HeMP”) for thermal history recovery from single and multi‐thermochronometer (U‐Th)/He data and data arrays, paper presented at GSA Annual Meeting (18–21 October 2009), Portland.en_US
dc.identifier.citedreferenceHager, C., D. Stockli, T. Dewane, G. Gehrels, and L. Ding ( 2009 ), Anatomy and crustal evolution of the central Lhasa terrane (S‐Tibet) revealed by investigations in the Xainza rift, paper presented in EGU General Assembly Conference Abstracts, vol. 11, p. 11346, (April 19–24), Vienna.en_US
dc.identifier.citedreferenceHarrison, T., and P. Zeitler ( 2005 ), Fundamentals of noble gas thermochronometry, Rev. Mineral. Geochem., 58 ( 1 ), 123 – 149.en_US
dc.identifier.citedreferenceHarrison, T., P. Copeland, W. Kidd, and O. Lovera ( 1995 ), Activation of the Nyainqentanghla shear zone: Implications for uplift of the southern Tibetan Plateau, Tectonics, 14 ( 3 ), 658 – 676, doi: 10.1029/95TC00608.en_US
dc.identifier.citedreferenceHollingsworth, J., B. Wernicke, and L. Ding ( 2010 ), Fault slip‐rate estimate for the dextral Beng Co strike‐slip fault, based on Quaternary dating of displaced paleo‐lake shorelines, paper presented at AGU Fall Meeting (December 13–17), vol. 1, p. 2229, San Francisco.en_US
dc.identifier.citedreferenceHolt, W. E., and T. C. Wallace ( 1990 ), Crustal thickness and upper mantle velocities in the Tibetan plateau region from the inversion of regional Pnl waveforms: Evidence for a thick upper mantle lid beneath southern Tibet, J. Geophys. Res., 95, 12,499 – 12,525, doi: 10.1029/JB095iB08p12499.en_US
dc.identifier.citedreferenceHourigan, J. K., P. W. Reiners, and M. T. Brandon ( 2005 ), U‐Th zonation‐dependent alpha‐ejection in (U‐Th)/He chronometry, Geochim. Cosmochim. Acta, 69 ( 13 ), 3349 – 3365.en_US
dc.identifier.citedreferenceHuang, W., J. Ni, F. Tilmann, D. Nelson, J. Guo, W. Zhao, J. Mechie, R. Kind, J. Saul, and R. Rapine ( 2000 ), Seismic polarization anisotropy beneath the central Tibetan Plateau, J. Geophys. Res., 105 ( B12 ), 27,979 – 27,989, doi: 10.1029/2000JB900339.en_US
dc.identifier.citedreferenceHubbard, M. S., and T. M. Harrison ( 1989 ), 40 Ar/ 39 Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and Tibetan Slab, eastern Nepal Himalaya, Tectonics, 8 ( 4 ), 865 – 880, doi: 10.1029/TC008i004p00865.en_US
dc.identifier.citedreferenceHuismans, R. S., and C. Beaumont ( 2003 ), Symmetric and asymmetric lithospheric extension: Relative effects of frictional‐plastic and viscous strain softening, J. Geophys. Res. 108 ( B10 ), 2496, doi: 10.1029/2002JB002026.en_US
dc.identifier.citedreferenceKali, E., P. Leloup, N. Arnaud, G. Mahéo, D. Liu, E. Boutonnet, J. Van der Woerd, X. Liu, J. Liu‐Zeng, and H. Li ( 2010 ), Exhumation history of the deepest central Himalayan rocks, Ama Drime range: Key pressure‐temperature‐deformation‐time constraints on orogenic models, Tectonics, 29, TC2014, doi: 10.1029/2009TC002551.en_US
dc.identifier.citedreferenceKapp, P., and J. H. Guynn ( 2004 ), Indian punch rifts Tibet, Geology, 32 ( 11 ), 993 – 996.en_US
dc.identifier.citedreferenceKapp, P., A. Yin, C. E. Manning, T. M. Harrison, M. H. Taylor, and L. Ding ( 2003 ), Tectonic evolution of the early Mesozoic blueschist‐bearing Qiangtang metamorphic belt, central Tibet, Tectonics, 22 ( 4 ), 1043, doi: 10.1029/2002TC001383.en_US
dc.identifier.citedreferenceKapp, P., A. Yin, T. M. Harrison, and L. Ding ( 2005 ), Cretaceous‐Tertiary shortening, basin development, and volcanism in central Tibet, Geol. Soc. Am. Bull., 117 ( 7–8 ), 865 – 878.en_US
dc.identifier.citedreferenceKapp, J. L. D., T. M. Harrison, P. Kapp, M. Grove, O. M. Lovera, and D. Lin ( 2005 ), Nyainqentanglha Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet, J. Geophys. Res., 110, B08413, doi: 10.1029/2004JB003330.en_US
dc.identifier.citedreferenceKapp, P., P. G. DeCelles, G. E. Gehrels, M. Heizler, and L. Ding ( 2007 ), Geological records of the Lhasa‐Qiangtang and Indo‐Asian collisions in the Nima area of central Tibet, Geol. Soc. Am. Bull., 119 ( 7–8 ), 917 – 932.en_US
dc.identifier.citedreferenceKapp, P., M. Taylor, D. Stockli, and L. Ding ( 2008 ), Development of active low‐angle normal fault systems during orogenic collapse: Insight from Tibet, Geology, 36, 7 – 10.en_US
dc.identifier.citedreferenceKetcham, R. ( 1996 ), Thermal models of core‐complex evolution in Arizona and New Guinea: Implications for ancient cooling paths and present‐day heat flow, Tectonics, 15 ( 5 ), 933 – 953, doi: 10.1029/96TC00033.en_US
dc.identifier.citedreferenceKetcham, R. A. ( 2005 ), Forward and inverse modeling of low‐temperature thermochronometry data, Rev. Mineral. Geochem., 58 ( 1 ), 275 – 314.en_US
dc.identifier.citedreferenceKetcham, R. A., R. A. Donelick, and M. B. Donelick ( 2000 ), AFTSolve: A program for multi‐kinetic modeling of apatite fission‐track data, Geol. Mater. Res., 2 ( 1 ), 1 – 32.en_US
dc.identifier.citedreferenceKlootwijk, C., P. Conaghan, and C. Powell ( 1985 ), The Himalayan Arc: Large‐scale continental subduction, oroclinal bending and back‐arc spreading, Earth Planet. Sci. Lett., 75 ( 2–3 ), 167 – 183.en_US
dc.identifier.citedreferenceKusznir, N. J., and R. G. Park ( 1987 ), The extensional strength of the continental lithosphere: Its dependence on geothermal gradient, and crustal composition and thickness, Geol. Soc. Lond. Spec. Publ., 28 ( 1 ), 35 – 52.en_US
dc.identifier.citedreferenceLangille, J. M., M. J. Jessup, J. M. Cottle, G. Lederer, and T. Ahmad ( 2012 ), Timing of metamorphism, melting and exhumation of the Leo Pargil dome, northwest India, J. Metamorphic Geol., 30, 769 – 791, doi: 10.1111/j.525‐1314.2012.00998.x.en_US
dc.identifier.citedreferenceLee, J., C. Hager, S. R. Wallis, D. F. Stockli, M. J. Whitehouse, M. Aoya, and Y. Wang ( 2011 ), Middle to late Miocene extremely rapid exhumation and thermal reequilibration in the Kung Co rift, southern Tibet, Tectonics, 30 ( 2 ), TC2007, doi: 10.1029/2010TC002745.en_US
dc.identifier.citedreferenceLi, D., and A. Yin ( 2008 ), Orogen‐parallel, active left‐slip faults in the Eastern Himalaya: Implications for the growth mechanism of the Himalayan Arc, Earth Planet. Sci. Lett., 274 ( 1–2 ), 258 – 267.en_US
dc.identifier.citedreferenceLister, G. S., and S. L. Baldwin ( 1993 ), Plutonism and the origin of metamorphic core complexes, Geology, 21 ( 7 ), 607 – 610.en_US
dc.identifier.citedreferenceLister, G., and G. Davis ( 1989 ), The origin of metamorphic core complexes and detachment faults formed during Tertiary continental extension in the northern Colorado River region, USA, J. Struct. Geol., 11 ( 1–2 ), 65 – 94.en_US
dc.identifier.citedreferenceLiu, M., and Y. Yang ( 2003 ), Extensional collapse of the Tibetan Plateau: Results of three‐dimensional finite element modeling, J. Geophys. Res., 108 ( 8 ), 1 – 15, doi: 10.1029/2002JB002248.en_US
dc.identifier.citedreferenceLópez‐Moro, F. J., M. López‐Plaza, and R. L. Romer ( 2012 ), Generation and emplacement of shear‐related highly mobile crustal melts: The synkinematic leucogranites from the Variscan Tormes Dome, Western Spain, Int. J. Earth Sci., 1 – 26.en_US
dc.identifier.citedreferenceMahéo, G., P. Leloup, F. Valli, R. Lacassin, N. Arnaud, J. Paquette, A. Fernandez, L. Haibing, K. Farley, and P. Tapponnier ( 2007 ), Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben, Earth Planet. Sci. Lett., 256 ( 1–2 ), 233 – 243.en_US
dc.identifier.citedreferenceMancktelow, N. S., and B. Grasemann ( 1997 ), Time‐dependent effects of heat advection and topography on cooling histories during erosion, Tectonophysics, 270 ( 3 ), 167 – 195.en_US
dc.identifier.citedreferenceMasek, J. G., B. L. Isacks, E. J. Fielding, and J. Browaeys ( 1994 ), Rift flank uplift in Tibet—Evidence for a viscous lower crust, Tectonics, 13 ( 3 ), 659 – 667, doi: 10.1029/94TC00452.en_US
dc.identifier.citedreferenceMcGrew, A. J., M. T. Peters, and J. E. Wright ( 2000 ), Thermobarometric constraints on the tectonothermal evolution of the East Humboldt Range metamorphic core complex, Nevada, Geol. Soc. Am. Bull., 112 ( 1 ), 45 – 60.en_US
dc.identifier.citedreferenceMechie, J., X. Yuan, B. Schurr, F. Schneider, C. Sippl, L. Ratschbacher, V. Minaev et al. ( 2012 ), Crustal and uppermost mantle velocity structure along a profile across the Pamir and southern Tien Shan as derived from project TIPAGE wide‐angle seismic data, Geophys. J. Int., 188, 385 – 407, doi: 10.1111/j.1365‐246X.2011.05278.x.en_US
dc.identifier.citedreferenceMercier, J., R. Armijo, P. Tapponnier, E. Carey‐Gailhardis, and H. Lin ( 1987 ), Change from late Tertiary compression to Quaternary extension in southern Tibet during the India‐Asia collision, Tectonics, 6, 275 – 304, doi: 10.1029/TC006i003p00275.en_US
dc.identifier.citedreferenceMolnar, P., and H. Lyon‐Caen ( 1989 ), Fault plane solutions of earthquakes and active tectonics of the northern and eastern parts of the Tibetan Plateau, Geophys. J. Int, 99, 123 – 153.en_US
dc.identifier.citedreferenceMolnar, P., and P. Tapponnier ( 1975 ), Cenozoic tectonics of Asia: Effects of a continental collision, Science, 189 ( 4201 ), 419 – 426.en_US
dc.identifier.citedreferenceMolnar, P., and P. Tapponnier ( 1978 ), Active tectonics of Tibet, J. Geophys. Res., 83 ( B11 ), 5361 – 5375.en_US
dc.identifier.citedreferenceMonastero, F. C., A. M. Katzenstein, J. S. Miller, J. R. Unruh, M. C. Adams, and K. Richards‐Dinger ( 2005 ), The Coso geothermal field: A nascent metamorphic core complex, Geol. Soc. Am. Bull., 117 ( 11–12 ), 1534 – 1553.en_US
dc.identifier.citedreferenceMonigle, P. W., J. Nábělek, J. Braunmiller, and N. S. Carpenter ( 2012 ), Evidence for low‐angle normal faulting in the Pumqu‐Xianza Rift, Tibet, Geophys. J. Int., 190, 1335 – 1340, doi: 10.1111/j.1365‐246X.2012.05581.x.en_US
dc.identifier.citedreferenceMurphy, M. A., and P. Copeland ( 2005 ), Transtensional deformation in the central Himalaya and its role in accommodating growth of the Himalayan orogen, Tectonics, 24 ( 4 ), TC4012, doi: 10.1029/2004TC001659.en_US
dc.identifier.citedreferenceMurphy, M., A. Yin, P. Kapp, T. Harrison, C. Manning, F. Ryerson, D. Lin, and G. Jinghui ( 2002 ), Structural evolution of the Gurla Mandhata detachment system, southwest Tibet: Implications for the eastward extent of the Karakoram fault system, Geol. Soc. Am. Bull., 114 ( 4 ), 428 – 447.en_US
dc.identifier.citedreferenceMurphy, M. A., V. Sanchez, and M. H. Taylor ( 2010 ), Syncollisional extension along the India–Asia suture zone, south‐central Tibet: Implications for crustal deformation of Tibet, Earth Planet. Sci. Lett., 290 ( 3 ), 233 – 243.en_US
dc.identifier.citedreferenceNábělek, J., G. Hetényi, J. Vergne, S. Sapkota, B. Kafle, M. Jiang, H. Su, J. Chen, and B. S. Huang ( 2009 ), Underplating in the Himalaya‐Tibet collision zone revealed by the Hi‐CLIMB experiment, Science, 325 ( 5946 ), 1371 – 1374.en_US
dc.identifier.citedreferenceNelson, K. D., W. Zhao, L. Brown, J. Kuo, J. Che, X. Liu, S. Klemperer, Y. Makovsky, R. Meissner, and J. Mechie ( 1996 ), Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results, Science, 274 ( 5293 ), 1684 – 1688.en_US
dc.identifier.citedreferenceNielsen, S. B., R. Stephenson, and E. Thomsen ( 2007 ), Dynamics of Mid‐Palaeocene North Atlantic rifting linked with European intra‐plate deformations, Nature, 450 ( 7172 ), 1071 – 1074.en_US
dc.identifier.citedreferencePan, Y., and W. S. F. Kidd ( 1992 ), Nyainqentanghla shear zone—A late Miocene extensional detachment in the southern Tibetan Plateau, Geology, 20 ( 9 ), 775 – 778.en_US
dc.identifier.citedreferencePowell, W. G., D. S. Chapman, N. Balling, and A. E. Beck ( 1988 ), Continental heat‐flow density, Handbook of Terrestrial Heat‐Flow Density Determination, 167–222.en_US
dc.identifier.citedreferenceRatschbacher, L., I. Krumrei, M. Blumenwitz, M. Staiger, R. Gloaguen, B. V. Miller, S. D. Samson, M. A. Edwards, and E. Appel ( 2011 ), Rifting and strike‐slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet, Geol. Soc. Lond. Spec. Publ., 353 ( 1 ), 127 – 163.en_US
dc.identifier.citedreferenceRegenauer‐Lieb, K., R. F. Weinberg, and G. Rosenbaum ( 2006 ), The effect of energy feedbacks on continental strength, Nature, 442 ( 7098 ), 67 – 70, doi: 10.1038/nature04868.en_US
dc.identifier.citedreferenceReiners, P. ( 2005 ), Zircon (U‐Th)/He thermochronometry, Rev. Mineral. Geochem., 58 ( 1 ), 151 – 179.en_US
dc.identifier.citedreferenceReiners, P. W., R. Brady, K. A. Farley, J. E. Fryxell, B. Wernicke, and D. Lux ( 2000 ), Helium Earth and Planetary Science Letters, 178(3–4), 315–326.en_US
dc.identifier.citedreferenceReiners, P., T. Spell, S. Nicolescu, and K. Zanetti ( 2004 ), Zircon (U‐Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating, Geochimica Et Cosmochimica Acta, 68 ( 8 ), 1857 – 1887.en_US
dc.identifier.citedreferenceRohrmann, A., P. Kapp, B. Carrapa, P. W. Reiners, J. Guynn, L. Ding, and M. Heizler ( 2012 ), Thermochronologic evidence for plateau formation in central Tibet by 45 Ma, Geology, 40, 187 – 190.en_US
dc.identifier.citedreferenceRoyden, L., B. Burchfiel, R. King, E. Wang, Z. Chen, F. Shen, and Y. Liu ( 1997 ), Surface deformation and lower crustal flow in eastern Tibet, Science, 276 ( 5313 ), 788 – 790.en_US
dc.identifier.citedreferenceSanchez, V., M. Murphy, A. Robinson, T. Lapen, M. Heizler, and M. Taylor ( 2010 ), Onset of oblique extension in south‐central Tibet by 15 Ma: Implications for diachronous extension of the Tibetan Plateau, paper presented in AGU Fall Meeting Abstracts (December 13–17), San Francisco.en_US
dc.identifier.citedreferenceSchill, E., E. Appel, O. Zeh, V. Singh, and P. Gautam ( 2001 ), Coupling of late‐orogenic tectonics and secondary pyrrhotite remanences: Towards a separation of different rotation processes and quantification of rotational underthrusting in the western Himalaya (northern India), Tectonophysics, 337 ( 1–2 ), 1 – 21.en_US
dc.identifier.citedreferenceShuster, D. L., R. M. Flowers, and K. A. Farley ( 2006 ), The influence of natural radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sci. Lett., 249 ( 3–4 ), 148 – 161.en_US
dc.identifier.citedreferenceSpencer, J. ( 1984 ), Role of tectonic denudation in warping and uplift of low‐angle normal faults, Geology, 12 ( 2 ), 95 – 98.en_US
dc.identifier.citedreferenceStockli, D. F. ( 2005 ), Application of low‐temperature thermochronometry to extensional tectonic settings, Rev. Mineral. Geochem., 58 ( 1 ), 411 – 448.en_US
dc.identifier.citedreferenceStockli, D. F., K. A. Farley, and T. A. Dumitru ( 2000 ), Calibration of the apatite (U‐Th)/He thermochronometer on an exhumed fault block, White Mountains, California, Geology, 28 ( 11 ), 983 – 986.en_US
dc.identifier.citedreferenceStockli, D., M. Taylor, A. Yin, T. Harrison, J. D'Andrea, P. Kapp, and L. Ding ( 2002a ), Late Miocene–Pliocene inception of EW extension in Tibet as evidenced by apatite (U‐Th), He data: Geological Society of America Abstracts with Programs (October 27–30), Denver, 34(6), 411.en_US
dc.identifier.citedreferenceStockli, D. F., B. E. Surpless, T. A. Dumitru, and K. A. Farley ( 2002b ), Thermochronological constraints on the timing and magnitude of Miocene and Pliocene extension in the central Wassuk Range, western Nevada, Tectonics, 21 ( 4 ), 1028, doi: 10.1029/2001TC001295.en_US
dc.identifier.citedreferenceStockli, D. F., T. A. Dumitru, M. O. McWilliams, and K. A. Farley ( 2003 ), Cenozoic tectonic evolution of the White Mountains, California and Nevada, Geol. Soc. Am. Bull., 115 ( 7 ), 788 – 816.en_US
dc.identifier.citedreferenceStyron, R., M. Taylor, and K. Okoronkwo ( 2010 ), Database of active structures from the Indo‐Asian collision, EOS Transactions, 91, 181 – 182.en_US
dc.identifier.citedreferenceStyron, R., M. Taylor, K. E. Sundell, D. F. Stockli, J. A. G. Oalmann, A. Möller, A. T. McCallister, D. Liu, and L. Ding ( 2013 ), Miocene initiation and acceleration of extension in the South Lunggar rift, western Tibet: Evolution of an active detachment system from structural mapping and (U‐Th)/He thermochronology, Tectonics, 32, 1 – 28, doi: 10.1002/tect.20053.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.