Show simple item record

Slow Resorption of Anorganic Bovine Bone by Osteoclasts in Maxillary Sinus Augmentation

dc.contributor.authorGalindo‐moreno, Pabloen_US
dc.contributor.authorHernández‐cortés, Pedroen_US
dc.contributor.authorMesa, Franciscoen_US
dc.contributor.authorCarranza, Nelsonen_US
dc.contributor.authorJuodzbalys, Gintarasen_US
dc.contributor.authorAguilar, Marianoen_US
dc.contributor.authorO'Valle, Franciscoen_US
dc.date.accessioned2013-12-04T18:57:56Z
dc.date.available2015-01-05T13:54:43Zen_US
dc.date.issued2013-12en_US
dc.identifier.citationGalindo‐moreno, Pablo ; Hernández‐cortés, Pedro ; Mesa, Francisco; Carranza, Nelson; Juodzbalys, Gintaras; Aguilar, Mariano; O'Valle, Francisco (2013). "Slow Resorption of Anorganic Bovine Bone by Osteoclasts in Maxillary Sinus Augmentation." Clinical Implant Dentistry and Related Research (6): 858-866.en_US
dc.identifier.issn1523-0899en_US
dc.identifier.issn1708-8208en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101852
dc.description.abstractPurpose: Different biomaterials have been suggested for guided bone regeneration (GBR). These might show the ideal properties to let a new bone formation in the grafted area. Among these ideal features, it is essential their controlled resorption in order to be replaced for new vital bone. Bovine bone has been used widely as a good biomaterial for GBR, however there is still an interesting controversy about its resorbable capacity. In this sense, the objective of this study was to examine the behavior of anorganic bovine bone (ABB) in long‐term maxillary sinus graft healing and study its relationship with morphological and morphometrical variables. Materials and Methods: Seventeen maxillary sinus augmentation procedures were performed in patients. Bone cores were obtained from implant receptor sites at 6 months, 3 years, and 7 years of implant placement for histological, morphometric, and immunohistochemical (tartrate resistant acid phosphatase [TRAP]/cathepsin K/CD68) studies. Results: The percentages of bone, ABB particles, connective tissue, osteocytes, and osteoblasts in maxillary sinus grafts were similar at 6 months, 3 years, and 7 years. A progressive and significant decrease was detected in osteoclasts ( p  = .05, Kruskal‐Wallis test), TRAP and cathepsin K expression ( p  = .014 and p  = .021, respectively), and osteoid lines ( p  = .038). Conclusion: According to these data, a decrease in osteoclasts over time may, partially, explain the ABB persistence observed in core biopsies. Further studies with more cases and different graft maturation times are required to elucidate the resorption rates and cell events underlying these phenomena.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.subject.otherBone Remodelingen_US
dc.subject.otherResorptionen_US
dc.subject.otherOsteocyteen_US
dc.subject.otherOsteoclastsen_US
dc.subject.otherIntrasinus Graften_US
dc.subject.otherImmunohistochemistryen_US
dc.subject.otherCathepsin Ken_US
dc.subject.otherTRAPen_US
dc.subject.otherAnorganic Bovine Boneen_US
dc.titleSlow Resorption of Anorganic Bovine Bone by Osteoclasts in Maxillary Sinus Augmentationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAssociate professor, Oral Surgery and Implant Dentistry Department, School of Dentistry, University of Granada, Granada, Spain; visiting associate professor, Department of Periodontics and Oral Medicine School of Dentistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherassociate professor, Pathology Department, School of Medicine, and IBIMER, University of Granada, Granada, Spainen_US
dc.contributor.affiliationotherprofessor, Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuaniaen_US
dc.contributor.affiliationotherprofessor and chairman, Periodontology Department, School of Dentistry, University of Buenos Aires, Buenos Aires, Argentinaen_US
dc.contributor.affiliationotherassociate professor, Periodontology Department, School of Dentistry, University of Granada, Granada, Spainen_US
dc.contributor.affiliationotherassociate professor, Traumatology and Orthopedic Surgery Department, “San Cecilio” Clinical Hospital and University of Granada, Granada, Spainen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101852/1/cid445.pdf
dc.identifier.doi10.1111/j.1708-8208.2012.00445.xen_US
dc.identifier.sourceClinical Implant Dentistry and Related Researchen_US
dc.identifier.citedreferenceYildirim M, Spiekermann H, Biesterfeld S, Edelhoff D. Maxillary sinus augmentation using xenogenic bone substitute material Bio‐Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin Oral Implants Res 2000; 11: 217 – 229.en_US
dc.identifier.citedreferenceTadjoedin ES, de Lange GL, Bronckers AL, Lyaruu DM, Burger EH. Deproteinized cancellous bovine bone (Bio‐Oss) as bone substitute for sinus floor elevation. A retrospective, histomorphometrical study of five cases. J Clin Periodontol 2003; 30: 261 – 270.en_US
dc.identifier.citedreferencePerrotti V, Nicholls BM, Horton MA, Piattelli A. Human osteoclast formation and activity on a xenogenous bone mineral. J Biomed Mater Res A 2009; 90: 238 – 246.en_US
dc.identifier.citedreferencePiattelli M, Favero G, Scarano A, Orsini G, Piattelli A. Bone reactions to anorganic bovine bone (Bio‐Oss) used in sinus augmentation procedures: a histologic long‐term report of 20 cases in humans. Int J Oral Maxillofac Implants 1999; 14: 835 – 840.en_US
dc.identifier.citedreferenceGalindo‐Moreno P, Avila G, Fernández‐Barbero JE, et al. Evaluation of sinus floor elevation using a composite bone graft mixture. Clin Oral Implants Res 2007; 18: 376 – 382.en_US
dc.identifier.citedreferenceMcAllister BS, Margolin MD, Cogan AG, Buck D, Hollinger JO, Lynch SE. Eighteen‐month radiographic and histologic evaluation of sinus grafting with anorganic bovine bone in the chimpanzee. Int J Oral Maxillofac Implants 1999; 14: 361 – 368.en_US
dc.identifier.citedreferenceCarmagnola D, Berglundh T, Lindhe J. The effect of a fibrin glue on the integration of Bio‐Oss with bone tissue. A experimental study in labrador dogs. J Clin Periodontol 2002; 29: 377 – 383.en_US
dc.identifier.citedreferenceAraújo M, Linder E, Lindhe J. Effect of a xenograft on early bone formation in extraction sockets: an experimental study in dog. Clin Oral Implants Res 2009; 20: 1 – 6.en_US
dc.identifier.citedreferenceAraújo MG, Liljenberg B, Lindhe J. Dynamics of Bio‐Oss Collagen incorporation in fresh extraction wounds: an experimental study in the dog. Clin Oral Implants Res 2010; 21: 55 – 64.en_US
dc.identifier.citedreferencePeetz M. Characterization of xenogenic bone material. In: Boyne PJ, ed. Osseous reconstruction of the maxilla and the mandible – surgical techniques using titanium mesh and bone mineral. Berlin: Quintessence, 1997: 87 – 100.en_US
dc.identifier.citedreferenceHallman M, Thor A. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontol 2000 2008; 47: 172 – 192.en_US
dc.identifier.citedreferenceVignery A. Osteoclasts and giant cells: macrophage‐macrophage fusion mechanism. Int J Exp Pathol 2000; 81: 291 – 304.en_US
dc.identifier.citedreferenceLuttikhuizen DT, Harmsen MC, Van Luyn MJA. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng 2006; 12: 1955 – 1970.en_US
dc.identifier.citedreferencePerrotti V, Nicholls BM, Piattelli A. Human osteoclast formation and activity on an equine spongy bone substitute. Clin Oral Implants Res 2009; 20: 17 – 23.en_US
dc.identifier.citedreferenceBredan BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 2007; 9: 1 – 7.en_US
dc.identifier.citedreferenceSchuklenk U, Ashcroft R. International research ethics. Bioethics 2000; 14: 158 – 172.en_US
dc.identifier.citedreferenceWang HL, Katranji A. ABC sinus augmentation classification. Int J Periodontics Restorative Dent 2008; 28: 383 – 389.en_US
dc.identifier.citedreferenceGalindo‐Moreno P, Moreno‐Riestra I, Avila G, et al. Effect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentation. Clin Oral Implants Res 2011; 22: 857 – 864.en_US
dc.identifier.citedreferenceHallman M, Lundgren S, Sennerby L. Histologic analysis of clinical biopsies taken 6 months and 3 years after maxillary sinus floor augmentation with 80% bovine hydroxyapatite and 20% autogenous bone mixed with fibrin glue. Clin Implant Dent Relat Res 2001; 3: 87 – 96.en_US
dc.identifier.citedreferenceValentini P, Abensur D, Densari D, Graziani JN, Hammerle C. Histological evaluation of Bio‐Oss in a 2‐stage sinus floor elevation and implantation procedure. A human case report. Clin Oral Implants Res 1998; 9: 59 – 64.en_US
dc.identifier.citedreferenceSchlegel AK, Donath K. Bio‐Oss – a resorbable bone substitute? J Long Term Eff Med Implants 1998; 8: 201 – 209.en_US
dc.identifier.citedreferenceWallace SS, Froum SJ, Tarnow DP. Histologic evaluation of a sinus elevation procedure: a clinical report. Int J Periodontics Restorative Dent 1996; 16: 46 – 51.en_US
dc.identifier.citedreferenceHallman M, Sennerby L, Lundgren S. A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. Int J Oral Maxillofac Implants 2002; 17: 635 – 643.en_US
dc.identifier.citedreferenceCobb CM, Eick JD, Barker BF, Mosby EL, Hiatt WR. Restoration of mandibular continuity defects using combinations of hydroxylapatite and autogenous bone: microscopic observations. J Oral Maxillofac Surg 1990; 48: 268 – 275.en_US
dc.identifier.citedreferenceSchlegel KA, Fichtner G, Schultze‐Mosgau S, Wiltfang J. Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. Int J Oral Maxillofac Implants 2003; 18: 53 – 58.en_US
dc.identifier.citedreferenceJoldersma M, Klein‐Nulend J, Oleksik AM, Heyligers IC, Burger EH. Estrogen enhances mechanical stress‐induced prostaglandin production by bone cells from elderly women. Am J Physiol Endocrinol Metab 2001; 280: E436 – E442.en_US
dc.identifier.citedreferenceGalindo‐Moreno P, Moreno‐Riestra I, Avila G, et al. Histomorphometric comparison of maxillary pristine bone and composite bone graft biopsies obtained after sinus augmentation. Clin Oral Implants Res 2010; 21: 122 – 128.en_US
dc.identifier.citedreferenceMerkx MA, Maltha JC, Freihofer HP. Incorporation of composite bone implants in the facial skeleton. Clin Oral Implants Res 2000; 11: 422 – 429.en_US
dc.identifier.citedreferenceSimion M, Fontana F, Rasperini G, Maiorana C. Vertical ridge augmentation by expanded‐polytetrafluoroethylene membrane and a combination of intraoral autogenous bone graft and deproteinized anorganic bovine bone (Bio Oss). Clin Oral Implants Res 2007; 18: 620 – 629.en_US
dc.identifier.citedreferenceTaylor JC, Cuff SE, Leger JPL, Morra A, Anderson GI. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. Int J Oral Maxillofac Implants 2002; 17: 321 – 330.en_US
dc.identifier.citedreferenceYamada S, Heymann D, Bouler JM, Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β‐tricalcium phosphate ratios. Biomaterials 1997; 18: 1037 – 1041.en_US
dc.identifier.citedreferenceAraújo M, Linder H, Wennström J, Lindhe J. The influence of Bio‐Oss® collagen on healing of an extraction socket: an experimental study in the dog. Int J Periodontics Restorative Dent 2008; 28: 123 – 135.en_US
dc.identifier.citedreferenceKatayama Y, House CM, Udagawa N, et al. Casein kinase 2 phosphorylation of recombinant rat osteopontin enhances adhesion of osteoclasts but not osteoblasts. J Cell Physiol 1998; 176: 179 – 187.en_US
dc.identifier.citedreferenceDuong LT, Rodan GA. The role of integrins in osteoclast function. J Bone Miner Metab 1999; 17: 1 – 6.en_US
dc.identifier.citedreferenceChellaiah MA, Hruska KA. The integrin alpha(v)beta(3) and CD44 regulate the actions of osteopontin on osteoclast motility. Calcif Tissue Int 2003; 72: 197 – 205.en_US
dc.identifier.citedreferenceEk‐Rylander B, Andersson G. Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate‐resistant acid phosphatase. Exp Cell Res 2010; 316: 443 – 451.en_US
dc.identifier.citedreferenceKanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 2008; 15: 100 – 114.en_US
dc.identifier.citedreferenceWatzek G, Fürst G, Gruber R. Biologic basis of sinus grafting. In: Jensen OT, ed. The sinus bone graft. Barcelona, Spain: Quintessence Books, 2006: 13 – 26.en_US
dc.identifier.citedreferenceGötz W, Gerber T, Michel B, Lossdörfer S, Henkel KO, Heinemann F. Immunohistochemical characterization of nanocrystalline hydroxyapatite silica gel (NanoBone(r)) osteogenesis: a study on biopsies from human jaws. Clin Oral Implants Res 2008; 19: 1016 – 1026.en_US
dc.identifier.citedreferenceRadomsky ML, Thompson AY, Spiro RC, Poser JW. Potential role of fibroblast growth factor in enhancement of fracture healing. Clin Orthop Relat Res 1998; 355 Suppl: S283 – S293.en_US
dc.identifier.citedreferenceGiannoudis PV, Dinopoulos H, Tsiridis E. Bone substitutes: an update. Injury 2005; 36 (Suppl 3 ): S20 – S27.en_US
dc.identifier.citedreferenceChaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM. Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci 2002; 961: 96 – 105.en_US
dc.identifier.citedreferenceSchilling AF, Linhart W, Filke S, et al. Resorbability of bone substitute biomaterials by human osteoclasts. Biomaterials 2004; 25: 3963 – 3972.en_US
dc.identifier.citedreferenceAghaloo TL, Moy PK. Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? Int J Oral Maxillofac Implants 2007; 22 (Suppl): 49 – 70.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.