Show simple item record

Aldehyde‐forming fatty acyl‐ C o A reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme

dc.contributor.authorLin, Fengmingen_US
dc.contributor.authorDas, Debasisen_US
dc.contributor.authorLin, Xiaoxia N.en_US
dc.contributor.authorMarsh, E. Neil G.en_US
dc.date.accessioned2013-12-04T18:57:59Z
dc.date.available2014-12-01T17:22:25Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationLin, Fengming; Das, Debasis; Lin, Xiaoxia N.; Marsh, E. Neil G. (2013). "Aldehyde‐forming fatty acyl‐ C o A reductase from cyanobacteria: expression, purification and characterization of the recombinant enzyme." FEBS Journal 280(19): 4773-4781.en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101857
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHydrocarbon Metabolismen_US
dc.subject.otherAldehyde Formationen_US
dc.subject.otherBiofuelsen_US
dc.subject.otherCyanobacteriaen_US
dc.subject.otherEnzyme Mechanismen_US
dc.titleAldehyde‐forming fatty acyl‐ C o A reductase from cyanobacteria: expression, purification and characterization of the recombinant enzymeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101857/1/febs12443.pdf
dc.identifier.doi10.1111/febs.12443en_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceEser BE, Das D, Han J, Jones PR & Marsh ENG ( 2011 ) Oxygen‐independent alkane formation by non‐heme iron‐dependent cyanobacterial aldehyde decarbonylase: investigation of kinetics and requirement for an external electron donor. Biochemistry 50, 10743 – 10750.en_US
dc.identifier.citedreferenceQui Y, Tittiger C, Wicker‐Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ & Feyereisen R ( 2012 ) An insect‐specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis. Proc Natl Acad Sci USA 109, 14858 – 14863.en_US
dc.identifier.citedreferencePeralta‐Yahya PP & Keasling JD ( 2010 ) Advanced biofuel production in microbes. Biotechnol J 5, 147 – 162.en_US
dc.identifier.citedreferenceConnor MR & Atsumi S ( 2010 ) Synthetic biology guides biofuel production. J Biomed Biotechnol 2010, 9.en_US
dc.identifier.citedreferenceRude MA & Schirmer A ( 2009 ) New microbial fuels: a biotech perspective. Curr Opin Microbiol 12, 274 – 281.en_US
dc.identifier.citedreferenceWillis RM, Wahlen BD, Seefeldt LC & Barney BM ( 2011 ) Characterization of a fatty acyl‐CoA reductase from Marinobacter aquaeolei VT8: a bacterial enzyme catalyzing the reduction of fatty acyl‐CoA to fatty alcohol. Biochemistry 50, 10550 – 10558.en_US
dc.identifier.citedreferenceMetz JG, Pollard MR, Anderson L, Hayes TR & Lassner MW ( 2000 ) Purification of a jojoba embryo fatty acyl‐coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed. Plant Physiol 122, 635 – 644.en_US
dc.identifier.citedreferenceRodriguez A, Wall L, Riendeau D & Meighen E ( 1983 ) Fatty acid acylation of proteins in bioluminescent bacteria. Biochemistry 22, 5604 – 5611.en_US
dc.identifier.citedreferenceReiser S & Somerville C ( 1997 ) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179, 2969 – 2975.en_US
dc.identifier.citedreferenceSchirmer A, Rude MA, Li X, Popova E & del Cardayre SB ( 2010 ) Microbial biosynthesis of alkanes. Science 329, 559 – 562.en_US
dc.identifier.citedreferenceDas D, Eser BE, Han J, Sciore A & Marsh ENG ( 2011 ) Oxygen‐independent decarbonylation of aldehydes by cyanobacterial aldehyde decarbonylase: a new reaction of diiron enzymes. Angew Chem Int Ed Engl 50, 7148 – 7152.en_US
dc.identifier.citedreferenceLi N, Nørgaard H, Warui DM, Booker SJ, Krebs C & Bollinger JM ( 2011 ) Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. J Am Chem Soc 133, 6158 – 6161.en_US
dc.identifier.citedreferenceWarui DM, Li N, Nørgaard H, Krebs C, Bollinger JM & Booker SJ ( 2011 ) Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase. J Am Chem Soc 133, 3316 – 3319.en_US
dc.identifier.citedreferenceAndre C, Kim SW, Yu X‐H & Shanklin J ( 2013 ) Fusing catalase to an alkane‐producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H 2 O 2 to the cosubstrate O 2. Proc Natl Acad Sci USA 110, 3191 – 3196.en_US
dc.identifier.citedreferenceConstantinides PP & Steim JM ( 1986 ) Solubility of palmitoyl‐coenzyme A in acyltransferase assay buffers containing magnesium ions. Arch Biochem Biophys 250, 267 – 270.en_US
dc.identifier.citedreferenceLee CY & Meighen EA ( 1997 ) Cysteine‐286 as the site of acylation of the Lux‐specific fatty acyl‐CoA reductase. Biochim Biophys Acta Protein Struct Molec Enzym 1338, 215 – 222.en_US
dc.identifier.citedreferenceDemmer U, Warkentin E, Srivastava A, Kockelhorn D, Potter M, Marx A, Fuchs G & Ermler U ( 2013 ) Structural basis for a bispecific NADP + and CoA binding site in an Archaeal malonyl‐coenzyme A reductase. J Biol Chem 288, 6363 – 6370.en_US
dc.identifier.citedreferenceKockelkorn D & Fuchs G ( 2009 ) Malonic semialdehyde reductase, succinic semialdehyde reductase, and succinyl‐coenzyme A reductase from Metallosphaera sedula: enzymes of the autotrophic 3‐hydroxypropionate/4‐hydroxybutyrate cycle in Sulfolobales. J Bacteriol 191, 6352 – 6362.en_US
dc.identifier.citedreferenceFaehnle CR, Le Coq J, Liu X & Viola RE ( 2006 ) Examination of key intermediates in the catalytic cycle of aspartate‐beta‐semialdehyde dehydrogenase from a Gram‐positive infectious bacteria. J Biol Chem 281, 31031 – 31040.en_US
dc.identifier.citedreferenceFaehnle CR, Ohren JF & Viola RE ( 2005 ) A new branch in the family: structure of aspartate‐beta‐semialdehyde dehydrogenase from Methanococcus jannaschii. J Mol Biol 353, 1055 – 1068.en_US
dc.identifier.citedreferenceSkarzynski T, Moody PCE & Wonacott AJ ( 1987 ) Structure of holo‐glyceraldehyde‐3‐phosphate dehydrogenase from Bacillus stearothermophilus at 1.8 A resolution. J Mol Biol 193, 171 – 187.en_US
dc.identifier.citedreferenceKunst L & Samuels AL ( 2003 ) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42, 51 – 80.en_US
dc.identifier.citedreferenceDennis M & Kolattukudy PE ( 1992 ) A cobalt‐porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci USA 89, 5306 – 5310.en_US
dc.identifier.citedreferenceVioque J & Kolattukudy PE ( 1997 ) Resolution and purification of an aldehyde‐generating and an alcohol‐generating fatty acyl‐CoA reductase from pea leaves ( Pisum sativum L.). Arch Biochem Biophys 340, 64 – 72.en_US
dc.identifier.citedreferenceWang X & Kolattukudy PE ( 1995 ) Solubilization and purification of aldehyde‐generating fatty acyl‐CoA reductase from green‐alga Botryococcus braunii. FEBS Lett 370, 15 – 18.en_US
dc.identifier.citedreferenceBourdenx B, Bernard A, Domergue F, Pascal S, Leger A, Roby D, Pervent M, Vile D, Haslam RP, Napier JA et al. ( 2011 ) Overexpression of Arabidopsis ECERIFERUM1 promotes wax very‐long‐chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiol 156, 29 – 45.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.