Show simple item record

Earth's collision with a solar filament on 21 January 2005: Overview

dc.contributor.authorKozyra, J. U.en_US
dc.contributor.authorManchester, W. B.en_US
dc.contributor.authorEscoubet, C. P.en_US
dc.contributor.authorLepri, S. T.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.contributor.authorGonzalez, W. D.en_US
dc.contributor.authorThomsen, M. W.en_US
dc.contributor.authorTsurutani, B. T.en_US
dc.date.accessioned2013-12-04T18:58:05Z
dc.date.available2014-12-01T17:22:25Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationKozyra, J. U.; Manchester, W. B.; Escoubet, C. P.; Lepri, S. T.; Liemohn, M. W.; Gonzalez, W. D.; Thomsen, M. W.; Tsurutani, B. T. (2013). "Earth's collision with a solar filament on 21 January 2005: Overview." Journal of Geophysical Research: Space Physics 118(10): 5967-5978.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101865
dc.description.abstractOn 21 January 2005, one of the fastest interplanetary coronal mass ejections (ICME) of solar cycle 23, containing exceptionally dense plasma directly behind the sheath, hit the magnetosphere. We show from charge‐state analysis that this material was a piece of the erupting solar filament and further, based on comparisons to the simulation of a fast CME, that the unusual location of the filament material was a consequence of three processes. As the ICME decelerated, the momentum of the dense filament material caused it to push through the flux rope toward the nose. Diverging nonradial flows in front of the filament moved magnetic flux to the sides of the ICME. At the same time, reconnection between the leading edge of the ICME and the sheath magnetic fields worked to peel away the outer layers of the flux rope creating a remnant flux rope and a trailing region of newly opened magnetic field lines. These processes combined to move the filament material into direct contact with the ICME sheath region. Within 1 h after impact and under northward interplanetary magnetic field (IMF) conditions, a cold dense plasma sheet formed within the magnetosphere from the filament material. Dense plasma sheet material continued to move through the magnetosphere for more than 6 h as the filament passed by the Earth. Densities were high enough to produce strong diamagnetic stretching of the magnetotail despite the northward IMF conditions and low levels of magnetic activity. The disruptions from the filament collision are linked to an array of unusual features throughout the magnetosphere, ionosphere, and atmosphere. These results raise questions about whether rare collisions with solar filaments may, under the right conditions, be a factor in producing even more extreme events. Key Points Study of unusual solar filament evolution and collision with geospace As CME decelerated, filament pushed through flux rope reaching sheath Within 1 h after arrival, cold dense plasma sheet formed from solar filamenten_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherCambridge Univ. Pressen_US
dc.subject.otherMagnetic Reconnectionen_US
dc.subject.otherMagnetotailen_US
dc.subject.otherPlasma Sheeten_US
dc.subject.otherSolar Filamenten_US
dc.subject.otherCoronal Mass Ejectionen_US
dc.titleEarth's collision with a solar filament on 21 January 2005: Overviewen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101865/1/jgra50567.pdf
dc.identifier.doi10.1002/jgra.50567en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePohjolainen, S., L. van Driel‐Gesztelyi, J. L. Culhane, P. K. Manoharan, and H. A. Elliott ( 2007 ), CME propagation characteristics from radio observations, Sol. Phys., 244, 167 – 188.en_US
dc.identifier.citedreferencePalmroth, M., T. V. Laitinen, and T. I. Pulkkinen ( 2006 ), Magnetopause energy and mass transfer: Results from a global MHD simulation, Ann. Geophys., 24 ( A3 ), 3467 – 3480.en_US
dc.identifier.citedreferenceReme, H., et al. ( 2005 ), The HIA instrument on board the Tan Ce 1 Double Star near‐equatorial spacecraft and its first results, Ann. Geophys., 23, 2757 – 2774.en_US
dc.identifier.citedreferenceRichardson, I. G., E. W. Cliver, and H. V. Cane ( 2001 ), Sources of geomagnetic storms for solar minimum and maximum conditions during 1972–2000, Geophys. Res. Lett., 28 ( 13 ), 2569 – 2572.en_US
dc.identifier.citedreferenceRodriguez, L., et al. ( 2008 ), Magnetic clouds seen at different locations in the heliosphere, Ann. Geophys., 26, 213 – 229.en_US
dc.identifier.citedreferenceRuffenach, A., et al. ( 2012 ), Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 117, A09101, doi: 10.1029/2012JA017624.en_US
dc.identifier.citedreferenceRust, D. M. ( 1999 ), in Magnetic Helicity in Space and Laboratory Plasmas, Geophys. Monogr. Ser., vol. 111, edited by M. R. Brown, R. C. Canfield, and A. A. Pevtsov, pp. 221 – 227, AGU, Washington, D.C.en_US
dc.identifier.citedreferenceSckopke, N. ( 1966 ), A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71 ( 13 ), 3125 – 3130.en_US
dc.identifier.citedreferenceSharma, R., N. Srivastava, D. Chakrabarty, C. MoÅNstl, and Q. Hu ( 2013 ), Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments, J. Geophys. Res. Space Physics, 118, 3954 – 3967, doi: 10.1002/jgra.50362.en_US
dc.identifier.citedreferenceShodhan, S., N. U. Crooker, S. W. Kahler, R. J. Fitzenreiter, D. E. Larson, R. P. Lepping, G. L. Siscoe, and J. T. Gosling ( 2000 ), Counterstreaming electrons in magnetic clouds, J. Geophys. Res., 105 ( A12 ), 27,261 – 27,268, doi: 10.1029/2000JA000060.en_US
dc.identifier.citedreferenceSkoug, R. M., et al. ( 1999 ), A prolonged He + enhancement within a coronal mass ejection in the solar wind, Geophys. Res. Lett., 26 ( 2 ), 161 – 164.en_US
dc.identifier.citedreferenceStone, E. C., A. M. Frandsen, R. A. Mewaldt, E. R. Christian, D. Margolies, J. F. Omes, and F. Snow ( 1998 ), The Advanced Composition Explorer, Space Sci. Rev., 86, 1 – 22.en_US
dc.identifier.citedreferenceTaubenschuss, U., N. V. Erkaev, H. K. Biernat, C. J. Farrugia, C. Möstl, and U. V. Amerstorfer ( 2010 ), The role of magnetic handedness in magnetic cloud propagation, Ann. Geophys., 28 ( 5 ), 1075 – 1100, doi: 10.5194/angeo‐28‐1075‐2010.en_US
dc.identifier.citedreferenceThomsen, M. F., E. Noveroske, J. E. Borovsky, and D. J. McComas ( 1997 ), Calculation of moments from measurements by the Los Alamos Magnetospheric Plasma Analyzer, Rep. LA‐13,566‐MS, Los Alamos Natl. Lab., Los Alamos, N.M.en_US
dc.identifier.citedreferenceThomsen, M. F., J. E. Borovsky, R. M. Skoug, and C. W. Smith ( 2003 ), Delivery of cold, dense plasma sheet material into the near‐Earth region, J. Geophys. Res., 108 ( A4 ), 1151, doi: 10.1029/2002JA009544.en_US
dc.identifier.citedreferenceTsurutani, B. T., and W. D. Gonzalez ( 1994 ), The causes of geomagnetic storms during solar maximum, Eos Trans. AGU, 75, 49 – 53.en_US
dc.identifier.citedreferenceTsurutani, B. T., W. D. Gonzalez, F. Tang, S. I. Akasofu, and E. Smith ( 1988 ), Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979), J. Geophys. Res., 93 ( A8 ), 8519 – 8531.en_US
dc.identifier.citedreferenceTsurutani, B. T., W. D. Gonzalez, G. S. Lakhina, and S. Alex ( 2003 ), The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108 ( A7 ), 1268, doi: 10.1029/2002JA009504.en_US
dc.identifier.citedreferenceTsurutani, B., et al. ( 2004 ), Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi: 10.1029/2003JA010342.en_US
dc.identifier.citedreferenceVaisberg, O. L., and G. N. Zastenker ( 1976 ), Solar wind and magnetosheath observations at Earth during August 1972, Space Sci. Rev., 19, 687 – 702.en_US
dc.identifier.citedreferenceWang, Y. M., P. Z. Ye, and S. Wang ( 2003 ), Multiple magnetic clouds: Several examples during March–April 2001, J. Geophys. Res., 108 ( A10 ), 1370, doi: 10.1029/2003JA009850.en_US
dc.identifier.citedreferenceWanliss, J. A., and K. M. Showalter ( 2006 ), High‐resolution global storm index: Dst versus SYM‐H, J. Geophys. Res., 111, A02202, doi: 10.1029/2005JA011034.en_US
dc.identifier.citedreferenceWeigel, R. S. ( 2010 ), Solar wind density influence on geomagnetic storm intensity, J. Geophys. Res., 115, A09201, doi: 10.1029/2009JA015062.en_US
dc.identifier.citedreferenceWimmer‐Schweingruber, R. F., et al. ( 2006 ), Understanding interplanetary coronal mass ejection signatures. Report of Working Group B, Space Sci. Rev., 123, 177 – 216.en_US
dc.identifier.citedreferenceZhang, J.‐Ch., M. W. Liemohn, M. F. Thomsen, J. U. Kozyra, M. H. Denton, and J. E. Borovsky ( 2006a ), A statistical comparison of hot‐ion properties at geosynchronous orbit during intense and moderate geomagnetic storms at solar maximum and minimum, J. Geophys. Res., 111, A07206, doi: 10.1029/2005JA011559.en_US
dc.identifier.citedreferenceZhang, Y., L. J. Paxton, J. U. Kozyra, H. Kil, and P. C. Brandt ( 2006b ), Nightside thermospheric FUV emissions due to energetic neutral atom precipitation during magnetic superstorms, J. Geophys. Res., 111, A09307, doi: 10.1029/2005JA011152.en_US
dc.identifier.citedreferenceZhou, X.‐Y., and B. T. Tsurutani ( 2003 ), Dawn and dusk auroras caused by gradual, intense solar wind ram pressure events, J. Atmos. Sol. Terr. Phys., 66, 153 – 160, doi: 10.1016/j.jastp.2003.09.008.en_US
dc.identifier.citedreferenceZurbuchen, T. H., and I. G. Richardson ( 2006 ), In‐situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31 – 43, doi: 10.1007/s11214‐006‐9010‐4.en_US
dc.identifier.citedreferenceBame, S. J., D. J. McComas, M. F. Thomsen, B. L. Barraclough, R. C. Elphic, J. P. Glore, J. T. Gosling, J. C. Chavez, E. P. Evans, and F. J. Wymer ( 1993 ), Magnetospheric plasma analyzer for spacecraft with constrained resources, Rev. Sci. Instrum., 64, 1026 – 1033.en_US
dc.identifier.citedreferenceBasu, S., S. Basu, K. M. Groves, H. C. Yeh, S.‐Y. Su, F. J. Rich, P. J. Sultan, and M. J. Keskinen ( 2001 ), Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000, Geophys. Res. Lett., 28 ( 18 ), 3577 – 3580.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, and D. J. McComas ( 1997 ), The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?, J. Geophys. Res., 102 ( A10 ), 22,089 – 22,097.en_US
dc.identifier.citedreferenceBoteler, D. H., and G. J. van Beek ( 1999 ), August 4, 1972 revisited: A new look at the geomagnetic disturbance that caused the L4 cable system outage, Geophys. Res. Lett., 26 ( 5 ), 577 – 580.en_US
dc.identifier.citedreferenceBurlaga, L. F., W. H. Mish, and Y. C. Whang ( 1990 ), Coalescence of recurrent streams of different sizes and amplitudes, J. Geophys. Res., 95 ( A3 ), 4247 – 4255.en_US
dc.identifier.citedreferenceBurlaga, L., et al. ( 1998 ), A magnetic cloud containing prominence material: January 1997, J. Geophys. Res., 103 ( A1 ), 277 – 285.en_US
dc.identifier.citedreferenceBurton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80 ( 31 ), 4204 – 4214.en_US
dc.identifier.citedreferenceCarovillano, R. L., and G. L. Siscoe ( 1973 ), Energy and momentum theorems in magnetospheric processes, Rev. Geophys., 11 ( 2 ), 289 – 353.en_US
dc.identifier.citedreferenceChian, A. C.‐L., and P. R. Munoz ( 2011 ), Detection of current sheets and magnetic reconnections at the turbulent leading edge of an interplanetary coronal mass ejection, Astrophys. J. Lett., 733 ( L34 ), doi: 10.1088/2041‐8205/733/2/L34.en_US
dc.identifier.citedreferenceChian, A. C.‐L., and P. R. Munoz ( 2012 ), Observation of magnetic reconnection at the turbulent leading edge of an interplanetary coronal mass ejection, in Understanding Solar Activity: Advances and Challenges, EAS Publications Series, vol. 55, edited by M. Faurobert, C. Fang, and T. Corbard, pp. 327 – 334, Cambridge Univ. Press, New York.en_US
dc.identifier.citedreferenceCliver, E. W., J. Feynman, and H. B. Garrett ( 1990 ), An estimate of the maximum speed of the solar wind, 1938–1989, J. Geophys. Res., 95 ( A10 ), 17,103 – 17,112.en_US
dc.identifier.citedreferenceCrooker, N. U., and T. S. Horbury ( 2006 ), Solar imprint on ICMEs, their magnetic connectivity, and heliospheric evolution, Space Sci. Rev., 123, 93 – 109, doi: 10.1007/s11214‐006‐9014‐0.en_US
dc.identifier.citedreferenceCrooker, N., S. Shodhah, J. T. Gosling, J. Simmerer, J. T. Steinberg, and S. W. Kahler ( 2000 ), Density extremes in the solar wind, Geophys. Res. Lett., 27 ( 23 ), 3769 – 3772.en_US
dc.identifier.citedreferenceDasso, S., C. H. Mandrini, P. Démoulin, and M. L. Luoni ( 2006 ), A new model‐independent method to compute magnetic helicity in magnetic clouds, Astron. Astrophys., 455, 349 – 359.en_US
dc.identifier.citedreferenceDasso, S., M. S. Nakwacki, P. Demoulin, and C. H. Mandrini ( 2007 ), Progressive transformation of a flux rope to an ICME: Comparative analysis using the direct and fitted expansion methods, Sol. Phys., 244, 115 – 137.en_US
dc.identifier.citedreferenceDavis, T. N., and M. Sugiura ( 1966 ), Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71 ( 3 ), 785 – 801.en_US
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of magnetic storms, J. Geophys. Res., 64 ( 12 ), 2239 – 2252.en_US
dc.identifier.citedreferenceDu, A. M., B. T. Tsurutani, and W. Sun ( 2008 ), Anomalous geomagnetic storm of 21–22 January 2005: A storm main phase during northward IMFs, J. Geophys. Res., 113, A10214, doi: 10.1029/2008JA013284.en_US
dc.identifier.citedreferenceD'Uston, C., J. M. Bosqued, F. Cambou, V. V. Temnyi, G. N. Zastenker, O. L. Vaisberg, and E. G. Eroshenko ( 1977 ), Energetic properties of interplanetary plasma at the Earth's orbit following the August 4, 1972 flare, Sol. Phys., 51, 217 – 229.en_US
dc.identifier.citedreferenceFarrugia, C. J., et al. ( 2002 ), Wind and ACE observations during the great flow of 1–4 May 1998: Relation to solar activity and implications for the magnetosphere, J. Geophys. Res., 107 ( A9 ), 1240, doi: 10.1029/2001JA000188.en_US
dc.identifier.citedreferenceFarrugia, C. J., V. K. Jordanova, M. F. Thomsen, G. Lu, S. W. H. Cowley, and K. W. Ogilvie ( 2006 ), A two‐ejecta event associated with a two‐step geomagnetic storm, J. Geophys. Res., 111, A11104, doi: 10.1029/2006JA011893.en_US
dc.identifier.citedreferenceForsyth, R. J., et al. ( 2006 ), ICMEs in the inner heliosphere: Origin, evolution, and propagation effects. Report of Working Group G, Space Sci. Rev., 123, 383 – 416, doi: 10.1007/s11214‐006‐9022‐0.en_US
dc.identifier.citedreferenceFoullon, C., C. J. Owen, S. Dasso, L. M. Green, I. Dandouras, H. A. Elliott, A. N. Fazakerley, Y. V. Bogdanova, and N. U. Crooker ( 2007 ), Multi‐spacecraft study of the 21 January 2005 ICME: Evidence of current sheet substructure near the periphery of a strongly expanding fast magnetic cloud, Sol. Phys, 244, 139 – 165.en_US
dc.identifier.citedreferenceGilbert, J. A., S. T. Lepri, E. Landi, and T. H. Zurbuchen ( 2012 ), First measurements of the complete heavy‐ion charge state distributions of C, O, and Fe associated with interplanetary coronal mass ejections, Astrophys. J., 751, 20, doi: 10.1088/0004‐637X/751/1/20.en_US
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497 – 539.en_US
dc.identifier.citedreferenceGloeckler, G., L. A. Fisk, S. Hefti, N. A. Schwadron, T. H. Zurbuchen, F. M. Ipavich, J. Geiss, P. Bochsler, and R. F. Wimmer‐Schweingruber ( 1999 ), Unusual composition of the solar wind in the 2–3 May 1998 CME observed with SWICS on ACE, Geophys. Res. Lett., 26 ( 2 ), 157 – 160.en_US
dc.identifier.citedreferenceGonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas ( 1994 ), What is a geomagnetic storm?, J. Geophys. Res., 99 ( A4 ), 5771 – 5792.en_US
dc.identifier.citedreferenceGopalswamy, N., M. Shimojo, W. Lu, S. Yashiro, K. Shibasaki, and R. A. Howard ( 2003 ), Prominence eruptions and coronal mass ejection: A statistical study using microwave observations, Astrophys. J., 586 ( 1 ), 562 – 578.en_US
dc.identifier.citedreferenceGosling, J. T., J. R. Asbridge, S. J. Bame, W. C. Feldman, and R. D. Zwickl ( 1980 ), Observations of large fluxes of He + in the solar wind following an interplanetary shock, J. Geophys. Res., 85 ( A7 ), 3431 – 3434.en_US
dc.identifier.citedreferenceGruesbeck, J. R., S. T. Lepri, and T. H. Zurbuchen ( 2012 ), Two Plasma Model for low charge state ICME Observations, Astrophys. J., 760, 141.en_US
dc.identifier.citedreferenceIlling, R. M. E., and A. J. Hundhausen ( 1985 ), Observation of a coronal transient from 1.2 to 6 Solar radii, J. Geophys. Res., 90 ( A1 ), 275 – 282.en_US
dc.identifier.citedreferenceIyemori, T. ( 1990 ), Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations, J. Geomagn. Geoelectr., 42, 1249 – 1265.en_US
dc.identifier.citedreferenceJackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, M. S. Hamilton, M. Tokumaru, and K. Fujiki ( 2009 ), 3D‐reconstruction of density enhancements behind interplanetary shocks from the Solar Mass Ejection Imager white‐light observations, CP1216, Twelfth International Solar Wind Conference, edited by M. Maksimovic, K. Issautier, N. Meyer‐Vernet, M. Moneuquet, and F. Pantellini, pp. 659 – 662, American Institute of Physics, Melville, N.Y.en_US
dc.identifier.citedreferenceKamide, Y., and S.‐I. Akasofu ( 1983 ), Notes on the auroral electrojet indices, Rev. Geophys., 21 ( 7 ), 1647 – 1656.en_US
dc.identifier.citedreferenceKamide, Y., and G. Rostoker ( 2004 ), What is the physical meaning of the AE index?, Eos Trans. AGU, 85 ( 19 ), 188 – 192.en_US
dc.identifier.citedreferenceKozyra, J. U., and M. W. Liemohn ( 2003 ), Ring current energy input and decay, Space Sci. Rev., 109, 105 – 131.en_US
dc.identifier.citedreferenceLangel, R. A., and R. H. Estes ( 1985 ), Large‐scale, near‐field magnetic fields from external sources and the corresponding induced internal field, J. Geophys. Res., 90 ( B3 ), 2487 – 2494.en_US
dc.identifier.citedreferenceLaundal, K. M., and N. Østgaard ( 2008 ), Persistent global proton aurora caused by high solar wind dynamic pressure, J. Geophys. Res., 113, A08231, doi: 10.1029/2008JA013147.en_US
dc.identifier.citedreferenceLavraud, B., M. H. Denton, M. F. Thomsen, J. E. Borovsky, and R. H. W. Friedel ( 2005 ), Superposed epoch analysis of dense plasma access to geosynchronous orbit, Ann. Geophys., 23, 2519 – 2529.en_US
dc.identifier.citedreferenceLavraud, B., M. F. Thomsen, S. Wing, M. Fujimoto, M. H. Denton, J. E. Borovsky, A. Aasnes, K. Seki, and J. M. Weygand ( 2006 ), Observation of two distinct cold, dense ion populations at geosynchronous orbit: Local time asymmetry, solar wind dependence and origin, Ann. Geophys., 24, 3451 – 3465.en_US
dc.identifier.citedreferenceLepping, R. P., D. B. Berdichevsky, A. Szabo, C. Arqueros, and A. J. Lazarus ( 2003 ), Profile of an average magnetic cloud at 1 AU for the quiet solar phase: Wind observations, Sol. Phys., 212, 425 – 444.en_US
dc.identifier.citedreferenceLepri, S. T., and T. H. Zurbuchen ( 2010 ), Direct observational evidence of filament material within interplanetary coronal mass ejections, Astrophys. J. Lett., 723, L22 – L27.en_US
dc.identifier.citedreferenceLepri, S. T., J. M. Laming, C. E. Rakowski, and R. von Steiger ( 2012 ), Spatially dependent heating and ionization in an ICME observed by both ACE and Ulysses, Astrophys. J., 760, 105 – 15, doi: 10.1088/0004‐637X/760/2/105.en_US
dc.identifier.citedreferenceLi, W., J. Raeder, M. F. Thomsen, and B. Lavraud ( 2008 ), Solar wind plasma entry into the magnetosphere under northward IMF conditions, J. Geophys. Res., 113, A04204, doi: 10.1029/2007JA012604.en_US
dc.identifier.citedreferenceLi, X., M. Temerin, B. T. Tsurutani, and S. Alex ( 2006 ), Modeling of 1–2 September 1859 super magnetic storm, Adv. Space Res., 38, 273 – 279.en_US
dc.identifier.citedreferenceLiemohn, M. W. ( 2003 ), Yet another caveat to the Dessler‐Parker‐Sckopke relation, J. Geophys. Res., 108 ( A6 ), 1251, doi: 10.1029/2003JA009839.en_US
dc.identifier.citedreferenceLiemohn, M. W., and J. U. Kozyra ( 2003 ), Lognormal form of the ring current energy content, J. Atmos. Sol. Terr. Phys., 65, 871 – 886.en_US
dc.identifier.citedreferenceLiemohn, M. W., J.‐C. Zhang, M. F. Thomsen, J. E. Borovsky, J. U. Kozyra, and R. Ilie ( 2008 ), Superstorms at geosynchronous orbit: How different are they?, Geophys. Res. Lett., 35, L06S06, doi: 10.1029/2007GL031717.en_US
dc.identifier.citedreferenceLiou, K., P. T. Newell, J. Shue, C. Meng, Y. Miyashita, H. Kojima, and H. Matsumoto ( 2007 ), “Compression aurora”: Particle precipitation driven by long‐duration high solar wind ram pressure, J. Geophys. Res., 112, A11216, doi: 10.1029/2007JA012443.en_US
dc.identifier.citedreferenceLiu, Z. X., C. P. Escoubet, Z. Pu, H. Laakso, J. K. Shi, C. Shen, and M. Hapgood ( 2005 ), The Double Star mission, Ann. Geophys., 23, 2707 – 2712.en_US
dc.identifier.citedreferenceLugaz, N., W. B. Manchester IV, and T. I. Gombosi ( 2005 ), Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth, Astrophys. J., 634, 651 – 662, doi: 10.1086/491782.en_US
dc.identifier.citedreferenceLyons, L. R. ( 2000 ), Geomagnetic disturbances: Characteristics of, distinction between types, and relations to interplanetary conditions, J. Atmos. Sol. Terr. Phys., 62, 1087 – 1114.en_US
dc.identifier.citedreferenceManchester, W. B., IV, A. J. Ridley, T. I. Gombosi, and D. L. Dezeeuw ( 2006 ), Modeling the Sun‐to‐Earth propagation of a very fast CME, Adv. Space Res., 38, 253 – 262.en_US
dc.identifier.citedreferenceMcPherron, R. L. ( 1997 ), The role of substorms in the generation of magnetic storms, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani et al., pp. 131 – 148, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceMunoz, P. R., et al. ( 2010 ), in Solar and stellar variability: Impact on Earth and planets, Proceedings IAU Symposium No. 264, edited by A. G. Kosovichev, A. H. Andrei, J.‐P. Rozelot, pp. 369 – 372, International Astronomical Union, Paris, France.en_US
dc.identifier.citedreferenceNational Research Council ( 2008 ), Severe space weather events—Understanding societal and economic impacts workshop report.en_US
dc.identifier.citedreferenceNewell, P. T., V. A. Sergeev, G. R. Bikkuzina, and S. Wing ( 1998 ), Characterizing the state of the magnetosphere: Testing the ion precipitation maxima latitude (b2i) and the ion isotropy boundary, J. Geophys. Res., 103, 4739 – 4745.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.