Show simple item record

Ipilimumab and radiation therapy for melanoma brain metastases

dc.contributor.authorSilk, Ann W.en_US
dc.contributor.authorBassetti, Michael F.en_US
dc.contributor.authorWest, Brady T.en_US
dc.contributor.authorTsien, Christina I.en_US
dc.contributor.authorLao, Christopher D.en_US
dc.date.accessioned2013-12-04T18:58:07Z
dc.date.available2015-01-05T13:54:43Zen_US
dc.date.issued2013-12en_US
dc.identifier.citationSilk, Ann W.; Bassetti, Michael F.; West, Brady T.; Tsien, Christina I.; Lao, Christopher D. (2013). "Ipilimumab and radiation therapy for melanoma brain metastases." Cancer Medicine 2(6): 899-906.en_US
dc.identifier.issn2045-7634en_US
dc.identifier.issn2045-7634en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101868
dc.description.abstractIpilimumab, an antibody that enhances T‐cell activation, may augment immunogenicity of tumor cells that are injured by radiation therapy. We hypothesized that patients with melanoma brain metastasis treated with both ipilimumab and radiotherapy would have improved overall survival, and that the sequence of treatments may affect disease control in the brain. We analyzed the clinical and radiographic records of melanoma patients with brain metastases who were treated with whole brain radiation therapy or stereotactic radiosurgery between 2005 and 2012. The hazard ratios for survival were estimated to assess outcomes as a function of ipilimumab use and radiation type. Seventy patients were identified, 33 of whom received ipilimumab and 37 who did not. The patients who received ipilimumab had a censored median survival of 18.3 months (95% confidence interval 8.1–25.5), compared with 5.3 months (95% confidence interval 4.0–7.6) for patients who did not receive ipilimumab. Ipilimumab and stereotactic radiosurgery were each significant predictors of improved overall survival (hazard ratio = 0.43 and 0.45, with P  = 0.005 and 0.008, respectively). Four of 10 evaluable patients (40.0%) who received ipilimumab prior to radiotherapy demonstrated a partial response to radiotherapy, compared with two of 22 evaluable patients (9.1%) who did not receive ipilimumab. Ipilimumab is associated with a significantly reduced risk of death in patients with melanoma brain metastases who underwent radiotherapy, and this finding supports the need for multimodality therapy to optimize patient outcomes. Prospective studies are needed and are underway. Treatment with ipilimumab significantly reduced the risk of death by 57% in patients with brain metastases due to melanoma who underwent whole brain radiation therapy or stereotactic radiosurgery ( SRS ). Patients who were treated with SRS and ipilimumab had a 16‐month improvement in survival as compared to those who received SRS alone.en_US
dc.publisherStata Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMelanomaen_US
dc.subject.otherIpilimumaben_US
dc.subject.otherStereotactic Radiosurgeryen_US
dc.subject.otherImmunotherapyen_US
dc.subject.otherBrain Metastasesen_US
dc.titleIpilimumab and radiation therapy for melanoma brain metastasesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelHematology and Oncologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101868/1/cam4140.pdf
dc.identifier.doi10.1002/cam4.140en_US
dc.identifier.sourceCancer Medicineen_US
dc.identifier.citedreferencePrins, R. M., D. D. Vo, H. Khan‐Farooqi, M.‐Y. Yang, H. Soto, J. S. Economou, et al. 2006. NK and CD4 cells collaborate to protect against melanoma tumor formation in the brain. J. Immunol. 177: 8448 – 8455.en_US
dc.identifier.citedreferenceKnisely, J. P. S., J. B. Yu, J. Flanigan, M. Sznol, H. M. Kluger, and V. L. S. Chiang. 2012. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J. Neurosurg. 117: 227 – 233.en_US
dc.identifier.citedreferenceMathew, M., M. Tam, P. A. Ott, A. C. Pavlick, S. C. Rush, B. R. Donahue, et al. 2013. Ipilimumab in melanoma with limited brain metastases treated with stereotactic radiosurgery. Melanoma Res. 23: 191 – 195.en_US
dc.identifier.citedreferenceWeber, J. S., A. Amin, D. Minor, J. Siegel, D. Berman, and S. J. O'Day. 2011. Safety and clinical activity of ipilimumab in melanoma patients with brain metastases: retrospective analysis of data from a phase 2 trial. Melanoma Res. 21: 530 – 534.en_US
dc.identifier.citedreferenceLao, C., J. Friedman, C. Tsien, D. Normolle, C. Chapman, Y. Cao, et al. 2013. Concurrent whole brain radiotherapy and bortezomib for brain metastasis. Radiat. Oncol. 8: 204.en_US
dc.identifier.citedreferenceStaudt, M., K. Lasithiotakis, U. Leiter, F. Meier, T. Eigentler, M. Bamberg, et al. 2010. Determinants of survival in patients with brain metastases from cutaneous melanoma. Br. J. Cancer 102: 1213 – 1218.en_US
dc.identifier.citedreferenceEigentler, T. K., A. Figl, D. Krex, P. Mohr, C. Mauch, K. Rass, et al. 2011. Number of metastases, serum lactate dehydrogenase level, and type of treatment are prognostic factors in patients with brain metastases of malignant melanoma. Cancer 117: 1697 – 1703.en_US
dc.identifier.citedreferenceLonser, R. R., D. K. Song, J. Klapper, M. Hagan, S. Auh, P. B. Kerr, et al. 2011. Surgical management of melanoma brain metastases in patients treated with immunotherapy. J. Neurosurg. 115: 30 – 36.en_US
dc.identifier.citedreferenceDu Four, S., S. Wilgenhof, J. Duerinck, A. Michotte, A. V. Binst, M. D. Ridder, et al. 2012. Radiation necrosis of the brain in melanoma patients successfully treated with ipilimumab, three case studies. Eur. J. Cancer 48: 3045 – 3051.en_US
dc.identifier.citedreferenceSperduto, P. W., S. T. Chao, P. K. Sneed, X. Luo, J. Suh, D. Roberge, et al. 2010. Diagnosis‐specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi‐institutional analysis of 4,259 patients. Int. J. Radiat. Oncol. Biol. Phys. 77: 655 – 661.en_US
dc.identifier.citedreferenceEisenhauer, E. A., P. Therasse, J. Bogaerts, L. H. Schwartz, D. Sargent, R. Ford, et al. 2009. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45: 228 – 247.en_US
dc.identifier.citedreferenceWolchok, J. D., A. Hoos, S. O'Day, J. S. Weber, O. Hamid, C. Lebbé, et al. 2009. Guidelines for the evaluation of immune therapy activity in solid tumors: immune‐related response criteria. Clin. Cancer Res. 15: 7412 – 7420.en_US
dc.identifier.citedreferenceCleves, M., W. W. Gould, R. G. Gutierrez, and Y. Marchenko. 2008. An introduction to survival analysis using Stata. 2nd ed. Stata Press, College Station, TX.en_US
dc.identifier.citedreferenceCao, Y., C. I. Tsien, Z. Shen, D. S. Tatro, R. Ten Haken, M. L. Kessler, et al. 2005. Use of magnetic resonance imaging to assess blood‐brain/blood‐glioma barrier opening during conformal radiotherapy. J. Clin. Oncol. 23: 4127 – 4136.en_US
dc.identifier.citedreferenceCorso, C. D., A. N. Ali, and R. Diaz. 2011. Radiation‐induced tumor neoantigens: imaging and therapeutic implications. Am. J. Cancer Res. 1: 390 – 412.en_US
dc.identifier.citedreferenceTakeshima, T., K. Chamoto, D. Wakita, T. Ohkuri, Y. Togashi, H. Shirato, et al. 2010. Local radiation therapy inhibits tumor growth through the generation of tumor‐specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 70: 2697 – 2706.en_US
dc.identifier.citedreferenceShiao, S., and L. Coussens. 2010. The tumor‐immune microenvironment and response to radiation therapy. J. Mammary Gland Biol. Neoplasia 15: 411 – 421.en_US
dc.identifier.citedreferenceHamilton, R., M. Krauze, M. Romkes, B. Omolo, P. Konstantinopoulos, T. Reinhard, et al. 2013. Pathologic and gene expression features of metastatic melanomas to the brain. Cancer 119: 2737 – 2746.en_US
dc.identifier.citedreferenceDewan, M. Z., A. E. Galloway, N. Kawashima, J. K. Dewyngaert, J. S. Babb, S. C. Formenti, et al. 2009. Fractionated but not single‐dose radiotherapy induces an immune‐mediated abscopal effect when combined with anti‐CTLA‐4 antibody. Clin. Cancer Res. 15: 5379 – 5388.en_US
dc.identifier.citedreferencePostow, M. A., M. K. Callahan, C. A. Barker, Y. Yamada, J. Yuan, S. Kitano, et al. 2012. Immunologic correlates of the abscopal effect in a patient with melanoma. N. Engl. J. Med. 366: 925 – 931.en_US
dc.identifier.citedreferenceStamell, E. F., J. D. Wolchok, S. Gnjatic, N. Y. Lee, and I. Brownell. 2013. The abscopal effect associated with a systemic anti‐melanoma immune response. Int. J. Radiat. Oncol. Biol. Phys. 85: 293 – 295.en_US
dc.identifier.citedreferencePeduzzi, P., J. Concato, A. R. Feinstein, and T. R. Holford. 1995. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J. Clin. Epidemiol. 48: 1503 – 1510.en_US
dc.identifier.citedreferenceChapman, P. B., A. Hauschild, C. Robert, J. B. Haanen, P. Ascierto, J. Larkin, et al. 2011. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364: 2507 – 2516.en_US
dc.identifier.citedreferenceLong, G. V., U. Trefzer, M. A. Davies, R. F. Kefford, P. A. Ascierto, P. B. Chapman, et al. 2012. Dabrafenib in patients with Val600Glu or Val600Lys BRAF‐mutant melanoma metastatic to the brain (BREAK‐MB): a multicentre, open‐label, phase 2 trial. Lancet Oncol. 13: 1087 – 1095.en_US
dc.identifier.citedreferenceGonzalez‐Martinez, J., L. Hernandez, L. Zamorano, A. Sloan, K. Levin, S. Lo, et al. 2002. Gamma knife radiosurgery for intracranial metastatic melanoma: a 6‐year experience. J. Neurosurg. 97: 494 – 498.en_US
dc.identifier.citedreferenceSampson, J. H., J. H. Carter, A. H. Friedman, and H. F. Seigler. 1998. Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma. J. Neurosurg. 88: 11 – 20.en_US
dc.identifier.citedreferenceFife, K. M., M. H. Colman, G. N. Stevens, I. C. Firth, D. Moon, K. F. Shannon, et al. 2004. Determinants of outcome in melanoma patients with cerebral metastases. J. Clin. Oncol. 22: 1293 – 1300.en_US
dc.identifier.citedreferenceMathieu, D., D. Kondziolka, P. B. Cooper, J. C. Flickinger, A. Niranjan, S. Agarwala, et al. 2007. Gamma knife radiosurgery in the management of malignant melanoma brain metastases. Neurosurgery 60: 471 – 482.en_US
dc.identifier.citedreferenceLiew, D. N., H. Kano, D. Kondziolka, D. Mathieu, A. Niranjan, J. C. Flickinger, et al. 2011. Outcome predictors of Gamma Knife surgery for melanoma brain metastases. J. Neurosurg. 114: 769 – 779.en_US
dc.identifier.citedreferenceHodi, F. S., S. J. O'Day, D. F. McDermott, R. W. Weber, J. A. Sosman, J. B. Haanen, et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363: 711 – 723.en_US
dc.identifier.citedreferenceRobert, C., L. Thomas, I. Bondarenko, S. O'Day, J. Weber, C. Garbe, et al. 2011. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364: 2517 – 2526.en_US
dc.identifier.citedreferenceMargolin, K., M. S. Ernstoff, O. Hamid, D. Lawrence, D. McDermott, I. Puzanov, et al. 2012. Ipilimumab in patients with melanoma and brain metastases: an open‐label, phase 2 trial. Lancet Oncol. 13: 459 – 465.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.