Show simple item record

Pathological impact of SMN 2 mis‐splicing in adult SMA mice

dc.contributor.authorSahashi, Kentaroen_US
dc.contributor.authorLing, Karen K. Y.en_US
dc.contributor.authorHua, Yiminen_US
dc.contributor.authorWilkinson, John Erbyen_US
dc.contributor.authorNomakuchi, Tomokien_US
dc.contributor.authorRigo, Franken_US
dc.contributor.authorHung, Geneen_US
dc.contributor.authorXu, Daviden_US
dc.contributor.authorJiang, Ya‐pingen_US
dc.contributor.authorLin, Richard Z.en_US
dc.contributor.authorKo, Chien‐pingen_US
dc.contributor.authorBennett, C. Franken_US
dc.contributor.authorKrainer, Adrian R.en_US
dc.date.accessioned2013-12-04T18:58:08Z
dc.date.available2014-12-01T17:22:26Zen_US
dc.date.issued2013-10en_US
dc.identifier.citationSahashi, Kentaro; Ling, Karen K. Y.; Hua, Yimin; Wilkinson, John Erby; Nomakuchi, Tomoki; Rigo, Frank; Hung, Gene; Xu, David; Jiang, Ya‐ping ; Lin, Richard Z.; Ko, Chien‐ping ; Bennett, C. Frank; Krainer, Adrian R. (2013). "Pathological impact of SMN 2 misâ splicing in adult SMA mice." EMBO Molecular Medicine 5(10): 1586-1601.en_US
dc.identifier.issn1757-4676en_US
dc.identifier.issn1757-4684en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/101869
dc.publisherCRC Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherSpinal Muscular Atrophyen_US
dc.subject.otherSplicingen_US
dc.subject.otherPathologyen_US
dc.subject.otherAdult‐Onset SMAen_US
dc.subject.otherSMN 2en_US
dc.titlePathological impact of SMN 2 mis‐splicing in adult SMA miceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101869/1/emmm201302567-reviewer_comments.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101869/2/emmm201302567.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/101869/3/emmm201302567-sm-0002-SuppFig-S1.pdf
dc.identifier.doi10.1002/emmm.201302567en_US
dc.identifier.sourceEMBO Molecular Medicineen_US
dc.identifier.citedreferenceMiles GB, Hartley R, Todd AJ, Brownstone RM ( 2007 ) Spinal cholinergic interneurons regulate the excitability of motoneurons during locomotion. Proc Natl Acad Sci USA 104: 2448 - 2453en_US
dc.identifier.citedreferenceLi Y, Thompson WJ ( 2011 ) Nerve terminal growth remodels neuromuscular synapses in mice following regeneration of the postsynaptic muscle fiber. J Neurosci 31: 13191 - 13203en_US
dc.identifier.citedreferenceLing KK, Gibbs RM, Feng Z, Ko CP ( 2012 ) Severe neuromuscular denervation of clinically relevant muscles in a mouse model of spinal muscular atrophy. Hum Mol Genet 21: 185 - 195en_US
dc.identifier.citedreferenceLing KK, Lin MY, Zingg B, Feng Z, Ko CP ( 2010 ) Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS ONE 5: e15457en_US
dc.identifier.citedreferenceLunn MR, Wang CH ( 2008 ) Spinal muscular atrophy. Lancet 371: 2120 - 2133en_US
dc.identifier.citedreferenceLutz CM, Kariya S, Patruni S, Osborne MA, Liu D, Henderson CE, Li DK, Pellizzoni L, Rojas J, Valenzuela DM, et al ( 2011 ) Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 121: 3029 - 3041en_US
dc.identifier.citedreferenceLyons PR, Slater CR ( 1991 ) Structure and function of the neuromuscular junction in young adult mdx mice. J Neurocytol 20: 969 - 981en_US
dc.identifier.citedreferenceMa Z, Lee SS ( 1996 ) Cirrhotic cardiomyopathy: getting to the heart of the matter. Hepatology 24: 451 - 459en_US
dc.identifier.citedreferenceMcAndrew PE, Parsons DW, Simard LR, Rochette C, Ray PN, Mendell JR, Prior TW, Burghes AH ( 1997 ) Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet 60: 1411 - 1422en_US
dc.identifier.citedreferenceMentis GZ, Blivis D, Liu W, Drobac E, Crowder ME, Kong L, Alvarez FJ, Sumner CJ, O'Donovan MJ ( 2011 ) Early functional impairment of sensory‐motor connectivity in a mouse model of spinal muscular atrophy. Neuron 69: 453 - 467en_US
dc.identifier.citedreferenceMoller S, Henriksen JH ( 2010 ) Cirrhotic cardiomyopathy. J Hepatol 53: 179 - 190en_US
dc.identifier.citedreferenceMonani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossoll W, Prior TW, et al ( 2000 ) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9: 333 - 339en_US
dc.identifier.citedreferenceMurray LM, Comley LH, Thomson D, Parkinson N, Talbot K, Gillingwater TH ( 2008 ) Selective vulnerability of motor neurons and dissociation of pre‐ and post‐synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet 17: 949 - 962en_US
dc.identifier.citedreferenceOliveira AL, Hydling F, Olsson E, Shi T, Edwards RH, Fujiyama F, Kaneko T, Hokfelt T, Cullheim S, Meister B ( 2003 ) Cellular localization of three vesicular glutamate transporter mRNAs and proteins in rat spinal cord and dorsal root ganglia. Synapse 50: 117 - 129en_US
dc.identifier.citedreferencePalazzolo I, Stack C, Kong L, Musaro A, Adachi H, Katsuno M, Sobue G, Taylor JP, Sumner CJ, Fischbeck KH, et al ( 2009 ) Overexpression of IGF‐1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy. Neuron 63: 316 - 328en_US
dc.identifier.citedreferencePark GH, Kariya S, Monani UR ( 2010a ) Spinal muscular atrophy: new and emerging insights from model mice. Curr Neurol Neurosci Rep 10: 108 - 117en_US
dc.identifier.citedreferencePark GH, Maeno‐Hikichi Y, Awano T, Landmesser LT, Monani UR ( 2010b ) Reduced survival of motor neuron (SMN) protein in motor neuronal progenitors functions cell autonomously to cause spinal muscular atrophy in model mice expressing the human centromeric (SMN2) gene. J Neurosci 30: 12005 - 12019en_US
dc.identifier.citedreferencePassini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, Hua Y, Rigo F, Matson J, Hung G, et al ( 2011 ) Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med 3: 72ra18en_US
dc.identifier.citedreferenceRiessland M, Ackermann B, Forster A, Jakubik M, Hauke J, Garbes L, Fritzsche I, Mende Y, Blumcke I, Hahnen E, et al ( 2010 ) SAHA ameliorates the SMA phenotype in two mouse models for spinal muscular atrophy. Hum Mol Genet 19: 1492 - 1506en_US
dc.identifier.citedreferenceRudnik‐Schoneborn S, Heller R, Berg C, Betzler C, Grimm T, Eggermann T, Eggermann K, Wirth R, Wirth B, Zerres K ( 2008 ) Congenital heart disease is a feature of severe infantile spinal muscular atrophy. J Med Genet 45: 635 - 638en_US
dc.identifier.citedreferenceRuggiu M, McGovern VL, Lotti F, Saieva L, Li DK, Kariya S, Monani UR, Burghes AH, Pellizzoni L ( 2012 ) A role for SMN exon 7 splicing in the selective vulnerability of motor neurons in spinal muscular atrophy. Mol Cell Biol 32: 126 - 138en_US
dc.identifier.citedreferenceSahashi K, Hua Y, Ling KK, Hung G, Rigo F, Horev G, Katsuno M, Sobue G, Ko CP, Bennett CF, et al ( 2012 ) TSUNAMI: an antisense method to phenocopy splicing‐associated diseases in animals. Genes Dev 26: 1874 - 1884en_US
dc.identifier.citedreferenceSchrank B, Gotz R, Gunnersen JM, Ure JM, Toyka KV, Smith AG, Sendtner M ( 1997 ) Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA 94: 9920 - 9925en_US
dc.identifier.citedreferenceShababi M, Glascock J, Lorson CL ( 2011 ) Combination of SMN trans‐splicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy. Hum Gene Ther 22: 135 - 144en_US
dc.identifier.citedreferenceSingh NK, Singh NN, Androphy EJ, Singh RN ( 2006 ) Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26: 1333 - 1346en_US
dc.identifier.citedreferenceSjogren K, Liu JL, Blad K, Skrtic S, Vidal O, Wallenius V, LeRoith D, Tornell J, Isaksson OG, Jansson JO, et al ( 1999 ) Liver‐derived insulin‐like growth factor I (IGF‐I) is the principal source of IGF‐I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci USA 96: 7088 - 7092en_US
dc.identifier.citedreferenceSteele AD, Jackson WS, King OD, Lindquist S ( 2007 ) The power of automated high‐resolution behavior analysis revealed by its application to mouse models of Huntington's and prion diseases. Proc Natl Acad Sci USA 104: 1983 - 1988en_US
dc.identifier.citedreferenceStewart PA, Hayakawa EM ( 1987 ) Interendothelial junctional changes underlie the developmental ‘tightening’ of the blood–brain barrier. Brain Res 429: 271 - 281en_US
dc.identifier.citedreferenceVasan RS, Sullivan LM, D'Agostino RB, Roubenoff R, Harris T, Sawyer DB, Levy D, Wilson PW ( 2003 ) Serum insulin‐like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med 139: 642 - 648en_US
dc.identifier.citedreferenceVitte JM, Davoult B, Roblot N, Mayer M, Joshi V, Courageot S, Tronche F, Vadrot J, Moreau MH, Kemeny F, et al ( 2004 ) Deletion of murine Smn exon 7 directed to liver leads to severe defect of liver development associated with iron overload. Am J Pathol 165: 1731 - 1741en_US
dc.identifier.citedreferenceWitts EC, Zagoraiou L, Miles GB ( 2013 ) Anatomy and function of cholinergic C bouton inputs to motor neurons. J Anat DOI: 10.1111/joa.12063en_US
dc.identifier.citedreferenceZagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB ( 2009 ) A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64: 645 - 662en_US
dc.identifier.citedreferenceAlnaqeeb MA, Goldspink G ( 1987 ) Changes in fibre type, number and diameter in developing and ageing skeletal muscle. J Anat 153: 31 - 45en_US
dc.identifier.citedreferenceBaxter RC, Dai J ( 1994 ) Purification and characterization of the acid‐labile subunit of rat serum insulin‐like growth factor binding protein complex. Endocrinology 134: 848 - 852en_US
dc.identifier.citedreferenceBebee TW, Dominguez CE, Samadzadeh‐Tarighat S, Akehurst KL, Chandler DS ( 2012 ) Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum Mol Genet 21: 4301 - 4313en_US
dc.identifier.citedreferenceBennett CF, Swayze EE ( 2010 ) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50: 259 - 293en_US
dc.identifier.citedreferenceBevan AK, Hutchinson KR, Foust KD, Braun L, McGovern VL, Schmelzer L, Ward JG, Petruska JC, Lucchesi PA, Burghes AH, et al ( 2010 ) Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9‐SMN delivery. Hum Mol Genet 19: 3895 - 3905en_US
dc.identifier.citedreferenceBosch‐Marce M, Wee CD, Martinez TL, Lipkes CE, Choe DW, Kong L, Van Meerbeke JP, Musaro A, Sumner CJ ( 2011 ) Increased IGF‐1 in muscle modulates the phenotype of severe SMA mice. Hum Mol Genet 20: 1844 - 1853en_US
dc.identifier.citedreferenceBurghes AH, Beattie CE ( 2009 ) Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick ? Nat Rev Neurosci 10: 597 - 609en_US
dc.identifier.citedreferenceCartegni L, Chew SL, Krainer AR ( 2002 ) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3: 285 - 298en_US
dc.identifier.citedreferenceCoovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH ( 1997 ) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6: 1205 - 1214en_US
dc.identifier.citedreferenceCouteaux R, Mira JC, d'Albis A ( 1988 ) Regeneration of muscles after cardiotoxin injury. I. Cytological aspects. Biol Cell 62: 171 - 182en_US
dc.identifier.citedreferenceCrooke ST ( 2007 ) Antisense Drug Technology: Principles, Strategies, and Applications, second edition, Boca Raton, FL: CRC Pressen_US
dc.identifier.citedreferenceDai J, Baxter RC ( 1994 ) Regulation in vivo of the acid‐labile subunit of the rat serum insulin‐like growth factor‐binding protein complex. Endocrinology 135: 2335 - 2341en_US
dc.identifier.citedreferenceDodge JC, Treleaven CM, Fidler JA, Hester M, Haidet A, Handy C, Rao M, Eagle A, Matthews JC, Taksir TV, et al ( 2010 ) AAV4‐mediated expression of IGF‐1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice. Mol Ther: J Am Soc Gene Ther 18: 2075 - 2084en_US
dc.identifier.citedreferenceDubowitz V, Sewry CA ( 2007 ) Muscle Biopsy: A Practical Approach, third edition, Amsterdam, Netherlands: Elsevieren_US
dc.identifier.citedreferenceDuchen LW, Excell BJ, Patel R, Smith B ( 1974 ) Changes in motor end‐plates resulting from muscle fibre necrosis and regeneration. A light and electron microscopic study of the effects of the depolarizing fraction (cardiotoxin) of Dendroaspis jamesoni venom. J Neurol Sci 21: 391 - 417en_US
dc.identifier.citedreferenceFoust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, Le TT, Morales PR, Rich MM, Burghes AH, et al ( 2010 ) Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol 28: 271 - 274en_US
dc.identifier.citedreferenceGavrilina TO, McGovern VL, Workman E, Crawford TO, Gogliotti RG, DiDonato CJ, Monani UR, Morris GE, Burghes AH ( 2008 ) Neuronal SMN expression corrects spinal muscular atrophy in severe SMA mice while muscle‐specific SMN expression has no phenotypic effect. Hum Mol Genet 17: 1063 - 1075en_US
dc.identifier.citedreferenceGogliotti RG, Quinlan KA, Barlow CB, Heier CR, Heckman CJ, Didonato CJ ( 2012 ) Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory‐motor defects are a consequence, not a cause, of motor neuron dysfunction. J Neurosci 32: 3818 - 3829en_US
dc.identifier.citedreferenceHeier CR, Satta R, Lutz C, DiDonato CJ ( 2010 ) Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum Mol Genet 19: 3906 - 3918en_US
dc.identifier.citedreferenceHofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B ( 2000 ) Htra2‐beta 1 stimulates an exonic splicing enhancer and can restore full‐length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 97: 9618 - 9623en_US
dc.identifier.citedreferenceHsieh‐Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H ( 2000 ) A mouse model for spinal muscular atrophy. Nat Genet 24: 66 - 70en_US
dc.identifier.citedreferenceHua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, Krainer AR ( 2010 ) Antisense correction of SMN2 splicing in the CNS rescues necrosis in a type III SMA mouse model. Genes Dev 24: 1634 - 1644en_US
dc.identifier.citedreferenceHua Y, Sahashi K, Rigo F, Hung G, Horev G, Bennett CF, Krainer AR ( 2011 ) Peripheral SMN restoration is essential for long‐term rescue of a severe spinal muscular atrophy mouse model. Nature 478: 123 - 126en_US
dc.identifier.citedreferenceHua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR ( 2007 ) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5: e73en_US
dc.identifier.citedreferenceHua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR ( 2008 ) Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am J Hum Genet 82: 834 - 848en_US
dc.identifier.citedreferenceJodelka FM, Ebert AD, Duelli DM, Hastings ML ( 2010 ) A feedback loop regulates splicing of the spinal muscular atrophy‐modifying gene, SMN2. Hum Mol Genet 19: 4906 - 4917en_US
dc.identifier.citedreferenceJuul A, Scheike T, Davidsen M, Gyllenborg J, Jorgensen T ( 2002 ) Low serum insulin‐like growth factor I is associated with increased risk of ischemic heart disease: a population‐based case‐control study. Circulation 106: 939 - 944en_US
dc.identifier.citedreferenceKariya S, Park GH, Maeno‐Hikichi Y, Leykekhman O, Lutz C, Arkovitz MS, Landmesser LT, Monani UR ( 2008 ) Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum Mol Genet 17: 2552 - 2569en_US
dc.identifier.citedreferenceKong L, Wang X, Choe DW, Polley M, Burnett BG, Bosch‐Marce M, Griffin JW, Rich MM, Sumner CJ ( 2009 ) Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J Neurosci 29: 842 - 851en_US
dc.identifier.citedreferenceKummer TT, Misgeld T, Lichtman JW, Sanes JR ( 2004 ) Nerve‐independent formation of a topologically complex postsynaptic apparatus. J Cell Biol 164: 1077 - 1087en_US
dc.identifier.citedreferenceLayman DK, Hegarty PV, Swan PB ( 1980 ) Comparison of morphological and biochemical parameters of growth in rat skeletal muscles. J Anat 130: 159 - 171en_US
dc.identifier.citedreferenceLe TT, McGovern VL, Alwine IE, Wang X, Massoni‐Laporte A, Rich MM, Burghes AH ( 2011 ) Temporal requirement for high SMN expression in SMA mice. Hum Mol Genet 20: 3578 - 3591en_US
dc.identifier.citedreferenceLe TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AH ( 2005 ) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full‐length SMN. Hum Mol Genet 14: 845 - 857en_US
dc.identifier.citedreferenceLee YI, Mikesh M, Smith I, Rimer M, Thompson W ( 2011 ) Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev Biol 356: 432 - 444en_US
dc.identifier.citedreferenceLi Y, Lee Y, Thompson WJ ( 2011 ) Changes in aging mouse neuromuscular junctions are explained by degeneration and regeneration of muscle fiber segments at the synapse. J Neurosci 31: 14910 - 14919en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.