Show simple item record

Ligand‐regulated oligomerization of β 2 ‐adrenoceptors in a model lipid bilayer

dc.contributor.authorFung, Juan Joséen_US
dc.contributor.authorDeupi, Xavieren_US
dc.contributor.authorPardo, Leonardoen_US
dc.contributor.authorYao, Xiao Jieen_US
dc.contributor.authorVelez‐ruiz, Gisselle Aen_US
dc.contributor.authorDeVree, Brian Ten_US
dc.contributor.authorSunahara, Roger Ken_US
dc.contributor.authorKobilka, Brian Ken_US
dc.date.accessioned2014-01-08T20:34:12Z
dc.date.available2014-01-08T20:34:12Z
dc.date.issued2009-11-04en_US
dc.identifier.citationFung, Juan José ; Deupi, Xavier; Pardo, Leonardo; Yao, Xiao Jie; Velez‐ruiz, Gisselle A ; DeVree, Brian T; Sunahara, Roger K; Kobilka, Brian K (2009). "Ligandâ regulated oligomerization of β 2 â adrenoceptors in a model lipid bilayer." The EMBO Journal 28(21): 3315-3328. <http://hdl.handle.net/2027.42/102037>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102037
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherβ 2 ‐Adrenoceptoren_US
dc.subject.otherInverse Agonisten_US
dc.subject.otherOligomersen_US
dc.subject.otherTM6en_US
dc.subject.otherFRETen_US
dc.titleLigand‐regulated oligomerization of β 2 ‐adrenoceptors in a model lipid bilayeren_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid19763081en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102037/1/embj2009267.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102037/2/embj2009267-sup-0001.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102037/3/embj2009267-sup-0002.pdf
dc.identifier.doi10.1038/emboj.2009.267en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceMilligan G, Bouvier M ( 2005 ) Methods to monitor the quaternary structure of G protein‐coupled receptors. FEBS J 272: 2914 – 2925en_US
dc.identifier.citedreferenceMansoor SE, Palczewski K, Farrens DL ( 2006 ) Rhodopsin self‐associates in asolectin liposomes. Proc Natl Acad Sci USA 103: 3060 – 3065en_US
dc.identifier.citedreferenceMargeta‐Mitrovic M, Jan YN, Jan LY ( 2000 ) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27: 97 – 106en_US
dc.identifier.citedreferenceMassey M, Algar WR, Krull UJ ( 2006 ) Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pairs and Forster distances for various dye‐DNA conjugates. Anal Chim Acta 568: 181 – 189en_US
dc.identifier.citedreferenceMedina R, Perdomo D, Bubis J ( 2004 ) The hydrodynamic properties of dark‐ and light‐activated states of n‐dodecyl beta‐ D ‐maltoside‐solubilized bovine rhodopsin support the dimeric structure of both conformations. J Biol Chem 279: 39565 – 39573en_US
dc.identifier.citedreferenceMellado M, Rodriguez‐Frade JM, Vila‐Coro AJ, Fernandez S, Martin de Ana A, Jones DR, Toran JL, Martinez AC ( 2001 ) Chemokine receptor homo‐ or heterodimerization activates distinct signaling pathways. EMBO J 20: 2497 – 2507en_US
dc.identifier.citedreferenceMercier JF, Salahpour A, Angers S, Breit A, Bouvier M ( 2002 ) Quantitative assessment of beta 1‐ and beta 2‐adrenergic receptor homo‐ and heterodimerization by bioluminescence resonance energy transfer. J Biol Chem 277: 44925 – 44931en_US
dc.identifier.citedreferenceNiu L, Kim JM, Khorana HG ( 2002 ) Structure and function in rhodopsin: asymmetric reconstitution of rhodopsin in liposomes. Proc Natl Acad Sci USA 99: 13409 – 13412en_US
dc.identifier.citedreferencePark JH, Scheerer P, Hofmann KP, Choe HW, Ernst OP ( 2008 ) Crystal structure of the ligand‐free G‐protein‐coupled receptor opsin. Nature 454: 183 – 187en_US
dc.identifier.citedreferencePin JP, Kniazeff J, Liu J, Binet V, Goudet C, Rondard P, Prezeau L ( 2005 ) Allosteric functioning of dimeric class C G‐protein‐coupled receptors. FEBS J 272: 2947 – 2955en_US
dc.identifier.citedreferenceRasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK ( 2007 ) Crystal structure of the human beta2 adrenergic G‐protein‐coupled receptor. Nature 450: 383 – 387en_US
dc.identifier.citedreferenceRocheville M, Lange DC, Kumar U, Patel SC, Patel RC, Patel YC ( 2000 ) Receptors for dopamine and somatostatin: formation of hetero‐oligomers with enhanced functional activity. Science 288: 154 – 157en_US
dc.identifier.citedreferenceRoess DA, Smith SM ( 2003 ) Self‐association and raft localization of functional luteinizing hormone receptors. Biol Reprod 69: 1765 – 1770en_US
dc.identifier.citedreferenceRosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK ( 2007 ) GPCR engineering yields high‐resolution structural insights into beta2‐adrenergic receptor function. Science 318: 1266 – 1273en_US
dc.identifier.citedreferenceSalahpour A, Angers S, Mercier JF, Lagace M, Marullo S, Bouvier M ( 2004 ) Homodimerization of the beta2‐adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 279: 33390 – 33397en_US
dc.identifier.citedreferenceScheerer P, Park JH, Hildebrand PW, Kim YJ, Krauss N, Choe HW, Hofmann KP, Ernst OP ( 2008 ) Crystal structure of opsin in its G‐protein‐interacting conformation. Nature 455: 497 – 502en_US
dc.identifier.citedreferenceSwaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B ( 2005 ) Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 280: 22165 – 22171en_US
dc.identifier.citedreferenceVeatch W, Stryer L ( 1977 ) The dimeric nature of the gramicidin A transmembrane channel: conductance and fluorescence energy transfer studies of hybrid channels. J Mol Biol 113: 89 – 102en_US
dc.identifier.citedreferenceVilardaga JP, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ ( 2008 ) Conformational cross‐talk between alpha2A‐adrenergic and mu‐opioid receptors controls cell signaling. Nat Chem Biol 4: 126 – 131en_US
dc.identifier.citedreferenceWhite JF, Grodnitzky J, Louis JM, Trinh LB, Shiloach J, Gutierrez J, Northup JK, Grisshammer R ( 2007 ) Dimerization of the class A G protein‐coupled neurotensin receptor NTS1 alters G protein interaction. Proc Natl Acad Sci USA 104: 12199 – 12204en_US
dc.identifier.citedreferenceWhorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK ( 2007 ) A monomeric G protein‐coupled receptor isolated in a high‐density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA 104: 7682 – 7687en_US
dc.identifier.citedreferenceWisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, Shenoy SK, Lefkowitz RJ ( 2007 ) A unique mechanism of beta‐blocker action: carvedilol stimulates beta‐arrestin signaling. Proc Natl Acad Sci USA 104: 16657 – 16662en_US
dc.identifier.citedreferenceYao X, Parnot C, Deupi X, Ratnala VR, Swaminath G, Farrens D, Kobilka B ( 2006 ) Coupling ligand structure to specific conformational switches in the beta2‐adrenoceptor. Nat Chem Biol 2: 417 – 422en_US
dc.identifier.citedreferenceYao X, Ruiz GV, Whoron MR, Rasmussen SGG, DeVree BT, Deupi X, Sunahara RK, Kobilka BK ( 2009 ) The effect of ligand efficacy on the formation and stability of a GPCR–G protein complex. Proc Natl Acad Sci USA 106: 9501 – 9506en_US
dc.identifier.citedreferenceZhu CC, Cook LB, Hinkle PM ( 2002 ) Dimerization and phosphorylation of thyrotropin‐releasing hormone receptors are modulated by agonist stimulation. J Biol Chem 277: 28228 – 28237en_US
dc.identifier.citedreferenceAllen JA, Halverson‐Tamboli RA, Rasenick MM ( 2007 ) Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci 8: 128 – 140en_US
dc.identifier.citedreferenceAltenbach C, Kusnetzow AK, Ernst OP, Hofmann KP, Hubbell WL ( 2008 ) High‐resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation. Proc Natl Acad Sci USA 105: 7439 – 7444en_US
dc.identifier.citedreferenceAngers S, Bouvier M ( 2000 ) Reply: beyond receptor dimerization. Trends Pharmacol Sci 21: 326en_US
dc.identifier.citedreferenceAngers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M ( 2000 ) Detection of beta 2‐adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97: 3684 – 3689en_US
dc.identifier.citedreferenceBayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG ( 2007 ) Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. J Biol Chem 282: 14875 – 14881en_US
dc.identifier.citedreferenceBrett M, Findlay JB ( 1979 ) Investigation of the organization of rhodopsin in the sheep photoreceptor membrane by using cross‐linking reagents. Biochem J 177: 215 – 223en_US
dc.identifier.citedreferenceChabre M, le Maire M ( 2005 ) Monomeric G‐protein‐coupled receptor as a functional unit. Biochemistry 44: 9395 – 9403en_US
dc.identifier.citedreferenceCheng ZJ, Miller LJ ( 2001 ) Agonist‐dependent dissociation of oligomeric complexes of G protein‐coupled cholecystokinin receptors demonstrated in living cells using bioluminescence resonance energy transfer. J Biol Chem 276: 48040 – 48047en_US
dc.identifier.citedreferenceCherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC ( 2007 ) High‐resolution crystal structure of an engineered human beta2‐adrenergic G protein‐coupled receptor. Science 318: 1258 – 1265en_US
dc.identifier.citedreferenceDorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M ( 2009 ) Analysis of receptor oligomerization by FRAP microscopy. Nat Methods 6: 225 – 230en_US
dc.identifier.citedreferenceDowner NW ( 1985 ) Cross‐linking of dark‐adapted frog photoreceptor disk membranes. Evidence for monomeric rhodopsin. Biophys J 47: 285 – 293en_US
dc.identifier.citedreferenceErnst OP, Gramse V, Kolbe M, Hofmann KP, Heck M ( 2007 ) Monomeric G protein‐coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit. Proc Natl Acad Sci USA 104: 10859 – 10864en_US
dc.identifier.citedreferenceFonseca JM, Lambert NA ( 2009 ) Instability of a class A GPCR oligomer interface. Mol Pharmacol 75: 1296 – 1299en_US
dc.identifier.citedreferenceFung BK, Hurley JB, Stryer L ( 1981 ) Flow of information in the light‐triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci USA 78: 152 – 156en_US
dc.identifier.citedreferenceGalandrin S, Bouvier M ( 2006 ) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen‐activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70: 1575 – 1584en_US
dc.identifier.citedreferenceGalvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B, Prezeau L, Pin JP ( 2001 ) Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J 20: 2152 – 2159en_US
dc.identifier.citedreferenceGether U, Lin S, Ghanouni P, Ballesteros JA, Weinstein H, Kobilka BK ( 1997 ) Agonists induce conformational changes in transmembrane domains III and VI of the beta2 adrenoceptor. EMBO J 16: 6737 – 6747en_US
dc.identifier.citedreferenceGhanouni P, Gryczynski Z, Steenhuis JJ, Lee TW, Farrens DL, Lakowicz JR, Kobilka BK ( 2001a ) Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem 276: 24433 – 24436en_US
dc.identifier.citedreferenceGhanouni P, Steenhuis JJ, Farrens DL, Kobilka BK ( 2001b ) Agonist‐induced conformational changes in the G‐protein‐coupling domain of the beta 2 adrenergic receptor. Proc Natl Acad Sci USA 98: 5997 – 6002en_US
dc.identifier.citedreferenceGines S, Hillion J, Torvinen M, Le Crom S, Casado V, Canela EI, Rondin S, Lew JY, Watson S, Zoli M, Agnati LF, Verniera P, Lluis C, Ferre S, Fuxe K, Franco R ( 2000 ) Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc Natl Acad Sci USA 97: 8606 – 8611en_US
dc.identifier.citedreferenceGonzalez‐Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, Lopez‐Gimenez JF, Zhou M, Okawa Y, Callado LF, Milligan G, Gingrich JA, Filizola M, Meana JJ, Sealfon SC ( 2008 ) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452: 93 – 97en_US
dc.identifier.citedreferenceGranier S, Kim S, Shafer AM, Ratnala VR, Fung JJ, Zare RN, Kobilka B ( 2007 ) Structure and conformational changes in the C‐terminal domain of the beta2‐adrenoceptor: insights from fluorescence resonance energy transfer studies. J Biol Chem 282: 13895 – 13905en_US
dc.identifier.citedreferenceGuo W, Shi L, Filizola M, Weinstein H, Javitch JA ( 2005 ) Crosstalk in G protein‐coupled receptors: changes at the transmembrane homodimer interface determine activation. Proc Natl Acad Sci USA 102: 17495 – 17500en_US
dc.identifier.citedreferenceGuo W, Shi L, Javitch JA ( 2003 ) The fourth transmembrane segment forms the interface of the dopamine D2 receptor homodimer. J Biol Chem 278: 4385 – 4388en_US
dc.identifier.citedreferenceGuo W, Urizar E, Kralikova M, Mobarec JC, Shi L, Filizola M, Javitch JA ( 2008 ) Dopamine D2 receptors form higher order oligomers at physiological expression levels. EMBO J 27: 2293 – 2304en_US
dc.identifier.citedreferenceHarding PJ, Attrill H, Boehringer J, Ross S, Wadhams GH, Smith E, Armitage JP, Watts A ( 2009 ) Constitutive dimerization of the g‐protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers. Biophys J 96: 964 – 973en_US
dc.identifier.citedreferenceHarikumar KG, Happs RM, Miller LJ ( 2008 ) Dimerization in the absence of higher‐order oligomerization of the G protein‐coupled secretin receptor. Biochim Biophys Acta 1778: 2555 – 2563en_US
dc.identifier.citedreferenceHebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M ( 1996 ) A peptide derived from a beta2‐adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J Biol Chem 271: 16384 – 16392en_US
dc.identifier.citedreferenceHill SJ ( 2006 ) G‐protein‐coupled receptors: past, present and future. Br J Pharmacol 147 (Suppl 1): S27 – S37en_US
dc.identifier.citedreferenceJames JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ ( 2006 ) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3: 1001 – 1006en_US
dc.identifier.citedreferenceJones KA, Borowsky B, Tamm JA, Craig DA, Durkin MM, Dai M, Yao WJ, Johnson M, Gunwaldsen C, Huang LY, Tang C, Shen Q, Salon JA, Morse K, Laz T, Smith KE, Nagarathnam D, Noble SA, Branchek TA, Gerald C ( 1998 ) GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396: 674 – 679en_US
dc.identifier.citedreferenceJordan BA, Devi LA ( 1999 ) G‐protein‐coupled receptor heterodimerization modulates receptor function. Nature 399: 697 – 700en_US
dc.identifier.citedreferenceKlco JM, Lassere TB, Baranski TJ ( 2003 ) C5a receptor oligomerization. I. Disulfide trapping reveals oligomers and potential contact surfaces in a G protein‐coupled receptor. J Biol Chem 278: 35345 – 35353en_US
dc.identifier.citedreferenceKobitski AY, Nierth A, Helm M, Jaschke A, Nienhaus GU ( 2007 ) Mg2+‐dependent folding of a Diels‐Alderase ribozyme probed by single‐molecule FRET analysis. Nucleic Acids Res 35: 2047 – 2059en_US
dc.identifier.citedreferenceLatif R, Graves P, Davies TF ( 2002 ) Ligand‐dependent inhibition of oligomerization at the human thyrotropin receptor. J Biol Chem 277: 45059 – 45067en_US
dc.identifier.citedreferenceLaw PY, Erickson‐Herbrandson LJ, Zha QQ, Solberg J, Chu J, Sarre A, Loh HH ( 2005 ) Heterodimerization of mu‐ and delta‐opioid receptors occurs at the cell surface only and requires receptor–G protein interactions. J Biol Chem 280: 11152 – 11164en_US
dc.identifier.citedreferenceLiang Y, Fotiadis D, Filipek S, Saperstein DA, Palczewski K, Engel A ( 2003 ) Organization of the G protein‐coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278: 21655 – 21662en_US
dc.identifier.citedreferenceMa AW, Redka DS, Pisterzi LF, Angers S, Wells JW ( 2007 ) Recovery of oligomers and cooperativity when monomers of the M2 muscarinic cholinergic receptor are reconstituted into phospholipid vesicles. Biochemistry 46: 7907 – 7927en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.