Show simple item record

Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath

dc.contributor.authorGershman, Daniel J.en_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorRaines, Jim M.en_US
dc.contributor.authorZurbuchen, Thomas H.en_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorBaker, Daniel N.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.date.accessioned2014-01-08T20:34:21Z
dc.date.available2015-01-05T13:54:44Zen_US
dc.date.issued2013-11en_US
dc.identifier.citationGershman, Daniel J.; Slavin, James A.; Raines, Jim M.; Zurbuchen, Thomas H.; Anderson, Brian J.; Korth, Haje; Baker, Daniel N.; Solomon, Sean C. (2013). "Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath." Journal of Geophysical Research: Space Physics 118(11): 7181-7199.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102063
dc.description.abstractMeasurements from the Fast Imaging Plasma Spectrometer (FIPS) and Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft during 40 orbits about Mercury are used to characterize the plasma depletion layer just exterior to the planet's dayside magnetopause. A plasma depletion layer forms at Mercury as a result of piled‐up magnetic flux that is draped around the magnetosphere. The low average upstream Alfvénic Mach number ( M A ~3–5) in the solar wind at Mercury often results in large‐scale plasma depletion in the magnetosheath between the subsolar magnetopause and the bow shock. Flux pileup is observed to occur downstream under both quasi‐perpendicular and quasi‐parallel shock geometries for all orientations of the interplanetary magnetic field (IMF). Furthermore, little to no plasma depletion is seen during some periods with stable northward IMF. The consistently low value of plasma β , the ratio of plasma pressure to magnetic pressure, at the magnetopause associated with the low average upstream M A is believed to be the cause for the high average reconnection rate at Mercury, reported to be nearly 3 times that observed at Earth. Finally, a characteristic depletion length outward from the subsolar magnetopause of ~300 km is found for Mercury. This value scales among planetary bodies as the average standoff distance of the magnetopause. Key Points Sub‐solar plasma depletion occurs at Mercury for nearly all upstream conditions Large‐scale depletion at Mercury results in increased dayside reconnection The characteristic depletion length scale at Mercury is ~280 kmen_US
dc.publisherW. H. Freemanen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPlasma Depletionen_US
dc.subject.otherMagnetosheathen_US
dc.subject.otherMercuryen_US
dc.subject.otherMagnetic Flux Pile‐Upen_US
dc.titleMagnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheathen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102063/1/jgra50640.pdf
dc.identifier.doi10.1002/2013JA019244en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSkoug, R. M., W. C. Feldman, J. T. Gosling, D. J. McComas, and C. W. Smith ( 2000 ), Solar wind electron characteristics inside and outside coronal mass ejections, J. Geophys. Res., 105, 23,069 – 23,084.en_US
dc.identifier.citedreferenceSchwartz, S. J. ( 1998 ), Shock and discontinuity normals, Mach numbers, and related parameters, in Analysis Methods for Multi‐Spacecraft Data, edited by G. Paschmann and P. Daly, pp. 249 – 270, International Space Science Institute, Bern, Switzerland.en_US
dc.identifier.citedreferenceScurry, L., C. T. Russell, and J. T. Gosling ( 1994 ), Geomagnetic activity and the beta dependence of the dayside reconnection rate, J. Geophys. Res., 99, 14,811 – 14,814, doi: 10.1029/94JA00794.en_US
dc.identifier.citedreferenceSiscoe, G. L., N. U. Crooker, G. M. Erickson, B. U. O. Sonnerup, N. C. Maynard, J. A. Schoendorf, K. D. Siebert, D. R. Weimer, W. W. White, and G. R. Wilson ( 2002 ), MHD properties of magnetosheath flow, Planet. Space Sci., 50, 461 – 471.en_US
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The effect of erosion on the solar wind stand‐off distance at Mercury, J. Geophys. Res., 84, 2076 – 2082, doi: 10.1029/JA084iA05p02076.en_US
dc.identifier.citedreferenceSlavin, J. A., R. C. Elphic, C. T. Russell, F. L. Scarf, J. H. Wolfe, J. D. Mihalov, D. S. Intriligator, L. H. Brace, H. A. Taylor Jr., and R. E. Daniell Jr. ( 1980 ), The solar wind interaction with Venus: Pioneer Venus observations of bow shock location and structure, J. Geophys. Res., 85, 7625 – 7641.en_US
dc.identifier.citedreferenceSlavin, J. A., E. J. Smith, P. R. Gazis, and J. D. Mihalov ( 1983 ), A Pioneer‐Voyager study of the solar wind interactions with Saturn, Geophys. Res. Lett., 10, 9 – 12.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610, doi: 10.1126/science.1172011.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.en_US
dc.identifier.citedreferenceSolomon, S. C., et al. ( 2001 ), The MESSENGER mission to Mercury: Scientific objectives and implementation, Planet. Space Sci., 49, 1445 – 1465.en_US
dc.identifier.citedreferenceSong, P., C. T. Russell, J. T. Gosling, M. Thomsen, and R. C. Elphic ( 1990 ), Observations of the density profile in the magnetosheath near the stagnation streamline, Geophys. Res. Lett., 17, 2035 – 2038.en_US
dc.identifier.citedreferenceSong, P., C. T. Russell, R. J. Fitzenreiter, J. T. Gosling, M. F. Thomsen, D. G. Mitchell, S. A. Fuselier, G. K. Parks, R. R. Anderson, and D. Hubert ( 1993 ), Structure and properties of the subsolar magnetopause for northward interplanetary magnetic field: Multiple‐instrument particle observations, J. Geophys. Res., 98, 11,319 – 11,337, doi: 10.1029/93JA00606.en_US
dc.identifier.citedreferenceSouthwood, D. J., and M. G. Kivelson ( 1992 ), On the form of the flow in the magnetosheath, J. Geophys. Res., 97, 2873 – 2879, doi: 10.1029/91JA02446.en_US
dc.identifier.citedreferenceSouthwood, D. J., and M. G. Kivelson ( 1995 ), Magnetosheath flow near the subsolar magnetopause: Zwan‐Wolf and Southwood‐Kivelson theories reconciled, Geophys. Res. Lett., 22, 3275 – 3278.en_US
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydrodynamic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 253.en_US
dc.identifier.citedreferenceViñas, A. F., and C. Gurgiolo ( 2009 ), Spherical harmonic analysis of particle velocity distribution function: Comparison of moments and anisotropies using Cluster data, J. Geophys. Res., 114, A01105, doi: 10.1029/2008JA013633.en_US
dc.identifier.citedreferenceViolante, L., M. B. B. Cattaneo, G. Moreno, and J. D. Richardson ( 1995 ), Observations of mirror waves and plasma depletion layer upstream of Saturn's magnetopause, J. Geophys. Res., 100, 12,047 – 12,055, doi: 10.1029/94JA02703.en_US
dc.identifier.citedreferenceWang, Y. L., J. Raeder, C. T. Russell, T. D. Phan, and M. Manapat ( 2003 ), Plasma depletion layer: Event studies with a global model, J. Geophys. Res., 108 ( A1 ), 1010, doi: 10.1029/2002JA009281.en_US
dc.identifier.citedreferenceWang, Y. L., J. Raeder, and C. T. Russell ( 2004 ), Plasma depletion layer: Magnetosheath flow structure and forces, Ann. Geophys., 22, 1001 – 1017.en_US
dc.identifier.citedreferenceWang, C.‐P., M. Gkioulidou, L. R. Lyons, and V. Angelopoulos ( 2012 ), Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet, J. Geophys. Res., 117, A08215, doi: 10.1029/2012JA017658.en_US
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceZhang, T. L., J. G. Luhmann, and C. T. Russell ( 1991 ), The magnetic barrier at Venus, J. Geophys. Res., 96, 11,145 – 11,153, doi: 10.1029/91JA00088.en_US
dc.identifier.citedreferenceZurbuchen, T. H., et al. ( 2011 ), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862 – 1865, doi: 10.1126/science.1211302.en_US
dc.identifier.citedreferenceZwan, B. J., and R. A. Wolf ( 1976 ), Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res., 81, 1636 – 1648, doi: 10.1029/JA081i010p01636.en_US
dc.identifier.citedreferenceAbraham‐Shrauner, B. ( 1972 ), Determination of magnetohydrodynamic shock normals, J. Geophys. Res., 77, 736 – 739, doi: 10.1029/JA077i004p00736.en_US
dc.identifier.citedreferenceAnderson, B. J., and S. A. Fuselier ( 1993 ), Magnetic pulsations from 0.1 to 4.0 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer, J. Geophys. Res., 98, 1461 – 1479, doi: 10.1029/92JA02197.en_US
dc.identifier.citedreferenceAnderson, B. J., S. A. Fuselier, S. P. Gary, and R. E. Denton ( 1994 ), Magnetic spectral signatures in the Earth's magnetosheath and plasma depletion layer, J. Geophys. Res., 99, 5877 – 5891, doi: 10.1029/93JA02827.en_US
dc.identifier.citedreferenceAnderson, B. J., T. D. Phan, and S. A. Fuselier ( 1997 ), Relationships between plasma depletion and subsolar reconnection, J. Geophys. Res., 102, 9531 – 9542, doi: 10.1029/97JA00173.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450, doi: 10.1007/s11214‐007‐9246‐7.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862, doi: 10.1126/science.1211001.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556, doi: 10.1007/s11214‐007‐9272‐5.en_US
dc.identifier.citedreferenceBaker, D. N., et al. ( 2013 ), Solar wind forcing at Mercury: WSA‐ENLIL model results, J. Geophys. Res. Space Physics, 118, 45 – 57, doi: 10.1029/2012JA018064.en_US
dc.identifier.citedreferenceBerchem, J., J. Raeder, and M. Ashour‐Abdalla ( 1995 ), Magnetic flux ropes at the high‐latitude magnetopause, Geophys. Res. Lett., 22, 1189 – 1192, doi: 10.1029/95GL01014.en_US
dc.identifier.citedreferenceBertucci, C., et al. ( 2003a ), Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars Global Surveyor observations, Geophys. Res. Lett., 30 ( 2 ), 1099, doi: 10.1029/2002GL015713.en_US
dc.identifier.citedreferenceBertucci, C., C. Mazelle, J. A. Slavin, C. T. Russell, and M. H. Acuña ( 2003b ), Magnetic field draping enhancement at Venus: Evidence for a magnetic pileup boundary, Geophys. Res. Lett., 30 ( 17 ), 1876, doi: 10.1029/2003GL017271.en_US
dc.identifier.citedreferenceBertucci, C., C. Mazelle, M. H. Acuña, C. T. Russell, and J. A. Slavin ( 2005 ), Structure of the magnetic pileup boundary at Mars and Venus, J. Geophys. Res., 110, A01209, doi: 10.1029/2004JA010592.en_US
dc.identifier.citedreferenceColeman, I. J. ( 2005 ), A multi‐spacecraft survey of magnetic field line draping in the dayside magnetosheath, Ann. Geophys., 23, 885 – 900.en_US
dc.identifier.citedreferenceColeman, I. J., M. Pinnock, and A. S. Rodger ( 2000 ), The ionospheric footprint of antiparallel merging regions on the dayside magnetopause, Ann. Geophys., 18, 511 – 516.en_US
dc.identifier.citedreferenceCrooker, N. U., T. E. Eastman, and G. S. Stiles ( 1979 ), Observations of plasma depletion in the magnetosheath at the dayside magnetopause, J. Geophys. Res., 84, 869 – 874, doi: 10.1029/JA084iA03p00869.en_US
dc.identifier.citedreferenceCummings, W. D., and P. J. Coleman Jr. ( 1968 ), Magnetic fields in the magnetopause and vicinity at synchronous altitude, J. Geophys. Res., 73, 5699 – 5718, doi: 10.1029/JA073i017p05699.en_US
dc.identifier.citedreferenceDenton, R. E., and J. G. Lyon ( 2000 ), Effect of pressure anisotropy on the structure of a two‐dimensional magnetosheath, J. Geophys. Res., 105, 7545 – 7556, doi: 10.1029/1999JA000360.en_US
dc.identifier.citedreferenceDenton, R. E., B. J. Anderson, S. P. Gary, and S. A. Fuselier ( 1994 ), Bounded anisotropy fluid model for ion temperatures, J. Geophys. Res., 99, 11,225 – 11,241.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceErkaev, N. V., C. J. Farrugia, and H. K. Biernat ( 2003 ), The role of the magnetic barrier in the solar wind‐magnetosphere interaction, Planet. Space Sci., 51, 745 – 755.en_US
dc.identifier.citedreferenceFairfield, D. H. ( 1979 ), On the average configuraton of the geomagnetic tail, J. Geophys. Res., 84, 1950 – 1958, doi: 10.1029/JA084iA05p01950.en_US
dc.identifier.citedreferenceFarrugia, C. J., N. V. Erkaev, H. K. Biernat, and L. F. Burlaga ( 1995 ), Anomalous magnetosheath properties during Earth passage of an interplanetary magnetic cloud, J. Geophys. Res., 100, 19,245 – 19,257, doi: 10.1029/95JA01080.en_US
dc.identifier.citedreferenceFarrugia, C. J., N. V. Erkaev, H. K. Biernat, G. R. Lawrence, and R. C. Elphic ( 1997 ), Plasma depletion layer model for low Alfvén Mach number: Comparison with ISEE observations, J. Geophys. Res., 102, 11,315 – 11,324, doi: 10.1029/97JA00410.en_US
dc.identifier.citedreferenceFeldman, W. C., J. R. Asbridge, S. J. Bame, M. D. Montgomery, and S. P. Gary ( 1975 ), Solar wind electrons, J. Geophys. Res., 80, 4181 – 4196, doi: 10.1029/JA080i031p04181.en_US
dc.identifier.citedreferenceFuselier, S. A., D. M. Klumpar, E. G. Shelley, B. J. Anderson, and A. J. Coates ( 1991 ), He 2+ and H + dynamics in the subsolar magnetosheath and plasma depletion layer, J. Geophys. Res., 96, 21,095 – 21,104, doi: 10.1029/91JA02145.en_US
dc.identifier.citedreferenceFuselier, S. A., B. J. Anderson, S. P. Gary, and R. E. Denton ( 1994 ), Inverse correlations between the ion temperature anisotropy and plasma beta in the Earth's quasi‐parallel magnetosheath, J. Geophys. Res., 99, 14,931 – 14,936, doi: 10.1029/94JA00865.en_US
dc.identifier.citedreferenceGary, S. P., M. E. McKean, and D. Winske ( 1993 ), Ion cyclotron anisotropy instabilities in the magnetosheath: Theory and simulations, J. Geophys. Res., 98, 3963 – 3971, doi: 10.1029/92JA02585.en_US
dc.identifier.citedreferenceGary, S. P., J. Wang, D. Winske, and S. A. Fuselier ( 1997 ), Proton temperature anisotropy upper bound, J. Geophys. Res., 102, 27,159 – 27,169, doi: 10.1029/97JA01726.en_US
dc.identifier.citedreferenceGershman, D. J., T. H. Zurbuchen, L. A. Fisk, J. A. Gilbert, J. M. Raines, B. J. Anderson, C. W. Smith, H. Korth, and S. C. Solomon ( 2012 ), Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER, J. Geophys. Res., 117, A00M02, doi: 10.1029/2012JA017829.en_US
dc.identifier.citedreferenceHesterberg T. C., D. S. Moore, S. Monaghan, A. Clipson, R. Epstein, B. A. Craig, and G. P. McCabe ( 2010 ), Bootstrap methods and permutation tests, in Introduction to the Practice of Statistics, 7th ed., edited by D. S. Moore, G. P. McCabe, and B. A. Craig, 70 pp., W. H. Freeman, New York.en_US
dc.identifier.citedreferenceHolzer, R. E., and J. A. Slavin ( 1978 ), Magnetic flux transfer associated with expansions and contractions of the dayside magnetosphere, J. Geophys. Res., 83, 3831 – 3839, doi: 10.1029/JA083iA08p03831.en_US
dc.identifier.citedreferenceHudson, P. D. ( 1970 ), Discontinuities in an anisotropic plasma and their identification in the solar wind, Planet. Space Sci., 18, 1611 – 1622.en_US
dc.identifier.citedreferenceJoy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and W. R. Paterson ( 2006 ), Mirror mode structures in the Jovian magnetosheath, J. Geophys. Res., 111, A12212, doi: 10.1029/2006JA011985.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. ( 2011 ), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi: 10.1029/2011GL049451.en_US
dc.identifier.citedreferenceLe, G., C. T. Russell, and J. T. Gosling ( 1994 ), Structure of the magnetopause for low Mach number and strongly northward interplanetary magnetic field, J. Geophys. Res., 99, 23,723 – 23,734, doi: 10.1029/94JA02182.en_US
dc.identifier.citedreferenceLe, G., C. T. Russell, J. T. Gosling, and M. F. Thomsen ( 1996 ), ISEE observations of low‐latitude boundary layer for northward interplanetary magnetic field: Implications for cusp reconnection, J. Geophys. Res., 101, 27,239 – 27,249, doi: 10.1029/96JA02528.en_US
dc.identifier.citedreferenceLees, L. ( 1964 ), Interaction between the solar plasma wind and the geomagnetic cavity, AIAA J., 2, 1576 – 1582.en_US
dc.identifier.citedreferenceLiu, Y., J. D. Richardson, J. W. Belcher, J. C. Kasper, and R. M. Skoug ( 2006a ), Plasma depletion and mirror waves ahead of interplanetary coronal mass ejections, J. Geophys. Res., 111, A09108, doi: 10.1029/2006JA011723.en_US
dc.identifier.citedreferenceLiu, Y., J. D. Richardson, J. Belcher, C. Wang, Q. Hu, and J. C. Kasper ( 2006b ), Constraints on the global structure of magnetic clouds: Transverse size and curvature, J. Geophys. Res., 111, A12S03, doi: 10.1029/2006JA011890.en_US
dc.identifier.citedreferenceLuhmann, J. G. ( 1986 ), The solar wind interaction with Venus, Space Sci. Rev., 44, 241 – 306.en_US
dc.identifier.citedreferenceLyon, J. G. ( 1994 ), MHD simulations of the magnetosheath, Adv. Space. Sci., 147, 21 – 28.en_US
dc.identifier.citedreferenceMaksimovic, M. V., V. Pierrard, and P. Riley ( 1997 ), Ulysses electron distributions fitted with kappa functions, Geophys. Res. Lett., 24, 1151 – 1154.en_US
dc.identifier.citedreferenceMaksimovic, M. V., et al. ( 2005 ), Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU, J. Geophys. Res., 110, A09104, doi: 10.1029/2005JA011119.en_US
dc.identifier.citedreferenceMcAdams, J. V., et al. ( 2012 ), MESSENGER at Mercury: From orbit insertion to first extended mission, paper given at the 63rd International Astronautical Congress, paper IAC‐12‐C1.5.6, 11 pp., Naples, Italy, October 1–5.en_US
dc.identifier.citedreferenceMidgley, J. E., and L. Davis Jr. ( 1963 ), Calculation by a moment technique of the perturbation of the geomagnetic field by the solar wind, J. Geophys. Res., 68, 5111 – 5123, doi: 10.1029/JZ068i018p05111.en_US
dc.identifier.citedreferenceMoretto, T., D. G. Sibeck, B. Lavraud, K. J. Trattner, H. Rème, and A. Balogh ( 2005 ), Flux pile‐up and plasma depletion at the high latitude dayside magnetopause during southward interplanetary magnetic field: A Cluster event study, Ann. Geophys., 23, 2259 – 2264.en_US
dc.identifier.citedreferenceNabert, C., K.‐H. Glassmeier, and F. Plaschke ( 2013 ), A new method for solving the MHD equations in the magnetosheath, Ann. Geophys., 31, 419 – 437.en_US
dc.identifier.citedreferenceNieves‐Chinchilla, T., and A. F. Viñas ( 2008 ), Solar wind electron distribution functions inside magnetic clouds, J. Geophys. Res., 113, A02105, doi: 10.1029/2007JA012703.en_US
dc.identifier.citedreferenceØieroset, M., D. L. Mitchell, T. D. Phan, P. R. Lin, D. H. Crider, and M. H. Acuña ( 2004 ), The magnetic field pile‐up and density depletion in the Martian magnetosheath: A comparison with the plasma depletion layer upstream of the Earth's magnetopause, Space Sci. Rev., 111, 185 – 202, doi: 10.1023/B:SPAC.0000032715.69695.9c.en_US
dc.identifier.citedreferenceOnsager, T. G., J. D. Scudder, M. Lockwood, and C. T. Russell ( 2001 ), Reconnection at the high‐latitude magnetopause during northward interplanetary magnetic field conditions, J. Geophys. Res., 106, 25,467 – 25,488, doi: 10.1029/2000JA000444.en_US
dc.identifier.citedreferencePaschmann, G., W. Baumjohann, N. Sckopke, T. D. Phan, and H. Lühr ( 1993 ), Structure of the dayside magnetopause for low magnetic shear, J. Geophys. Res., 98, 13,409 – 13,422, doi: 10.1029/93JA00646.en_US
dc.identifier.citedreferencePhan, T. D., G. Paschmann, W. Baumjohann, N. Sckopke, and H. Lühr ( 1994 ), The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations, J. Geophys. Res., 99, 121 – 141, doi: 10.1029/93JA02444.en_US
dc.identifier.citedreferencePhan, T. D., et al. ( 1997 ), Low‐latitude dusk flank magnetosheath, magnetopause, and boundary layer for low magnetic shear: Wind observations, J. Geophys. Res., 102, 19,883 – 19,895, doi: 10.1029/97JA01596.en_US
dc.identifier.citedreferencePhan, T., et al. ( 2003 ), Simultaneous Cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF, Geophys. Res. Lett., 30 ( 10 ), 1509, doi: 10.1029/2003GL016885.en_US
dc.identifier.citedreferencePilipp, W. G., H. Miggenrieder, M. D. Montgomery, K.‐H. Mühlhaüser, H. Rosenbauer, and R. Schwenn ( 1987 ), Unusual electron distribution functions in the solar wind derived from the Helios plasma experiment: Double‐strahl distributions and distributions with an extremely anisotropic core, J. Geophys. Res., 92, 1093 – 1101.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.