Show simple item record

Hypoxia regulates glutamate receptor trafficking through an HIF‐independent mechanism

dc.contributor.authorPark, Eun Chanen_US
dc.contributor.authorGhose, Piyaen_US
dc.contributor.authorShao, Zhiyongen_US
dc.contributor.authorYe, Qien_US
dc.contributor.authorKang, Lijunen_US
dc.contributor.authorXu, X Z Shawnen_US
dc.contributor.authorPowell‐coffman, Jo Anneen_US
dc.contributor.authorRongo, Christopheren_US
dc.date.accessioned2014-01-08T20:34:23Z
dc.date.available2014-01-08T20:34:23Z
dc.date.issued2012-03-21en_US
dc.identifier.citationPark, Eun Chan; Ghose, Piya; Shao, Zhiyong; Ye, Qi; Kang, Lijun; Xu, X Z Shawn; Powell‐coffman, Jo Anne ; Rongo, Christopher (2012). "Hypoxia regulates glutamate receptor trafficking through an HIFâ independent mechanism." The EMBO Journal 31(6): 1379-1393. <http://hdl.handle.net/2027.42/102065>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102065
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherC. Elegansen_US
dc.subject.otherHIFen_US
dc.subject.otherHypoxiaen_US
dc.subject.otherProlyl Hydroxylaseen_US
dc.subject.otherGlutamateen_US
dc.titleHypoxia regulates glutamate receptor trafficking through an HIF‐independent mechanismen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22252129en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102065/1/embj2011499-reviewer_comments.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102065/2/embj2011499-sup-0001.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102065/3/embj2011499.pdf
dc.identifier.doi10.1038/emboj.2011.499en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceRizo J, Sudhof TC ( 1998 ) C2‐domains, structure and function of a universal Ca2+‐binding domain. J Biol Chem 273: 15879 – 15882en_US
dc.identifier.citedreferencePark EC, Glodowski DR, Rongo C ( 2009 ) The ubiquitin ligase RPM‐1 and the p38 MAPK PMK‐3 regulate AMPA receptor trafficking. PloS One 4: e4284en_US
dc.identifier.citedreferencePocock R, Hobert O ( 2008 ) Oxygen levels affect axon guidance and neuronal migration in Caenorhabditis elegans. Nat Neurosci 11: 894 – 900en_US
dc.identifier.citedreferenceRongo C, Kaplan JK ( 1999 ) CaMKII regulates the density of central glutamatergic synapses in vivo. Nature 402: 195 – 199en_US
dc.identifier.citedreferenceRongo C, Whitfield CW, Rodal A, Kim SK, Kaplan JM ( 1998 ) LIN‐10 is a shared component of the polarized protein localization pathways in neurons and epithelia. Cell 94: 751 – 759en_US
dc.identifier.citedreferenceSchaefer H, Rongo C ( 2006 ) KEL‐8 is a substrate receptor for CUL3‐dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol Biol Cell 17: 1250 – 1260en_US
dc.identifier.citedreferenceSemenza GL ( 2009 ) Regulation of oxygen homeostasis by hypoxia‐inducible factor 1. Physiology (Bethesda) 24: 97 – 106en_US
dc.identifier.citedreferenceShao Z, Zhang Y, Powell‐Coffman JA ( 2009 ) Two distinct roles for EGL‐9 in the regulation of HIF‐1‐mediated gene expression in Caenorhabditis elegans. Genetics 183: 821 – 829en_US
dc.identifier.citedreferenceShao Z, Zhang Y, Ye Q, Saldanha JN, Powell‐Coffman JA ( 2010 ) C. elegans SWAN‐1 binds to EGL‐9 and regulates HIF‐1‐mediated resistance to the bacterial pathogen Pseudomonas aeruginosa PAO1. PLoS Pathog 6: e1001075en_US
dc.identifier.citedreferenceSheardown MJ, Suzdak PD, Nordholm L ( 1993 ) AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h. Eur J Pharmacol 236: 347 – 353en_US
dc.identifier.citedreferenceShen C, Shao Z, Powell‐Coffman JA ( 2006 ) The Caenorhabditis elegans rhy‐1 gene inhibits HIF‐1 hypoxia‐inducible factor activity in a negative feedback loop that does not include vhl‐1. Genetics 174: 1205 – 1214en_US
dc.identifier.citedreferenceShi A, Chen CC, Banerjee R, Glodowski D, Audhya A, Rongo C, Grant BD ( 2010 ) EHBP‐1 functions with RAB‐10 during endocytic recycling in Caenorhabditis elegans. Mol Biol Cell 21: 2930 – 2943en_US
dc.identifier.citedreferenceShi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R ( 1999 ) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science (New York, NY) 284: 1811 – 1816en_US
dc.identifier.citedreferenceShim J, Umemura T, Nothstein E, Rongo C ( 2004 ) The unfolded protein response regulates glutamate receptor export from the endoplasmic reticulum. Mol Biol Cell 15: 4818 – 4828en_US
dc.identifier.citedreferenceShin DS, Buck LT ( 2003 ) Effect of anoxia and pharmacological anoxia on whole‐cell NMDA receptor currents in cortical neurons from the western painted turtle. Physiol Biochem Zool 76: 41 – 51en_US
dc.identifier.citedreferenceTakahashi M, Kohara A, Shishikura J, Kawasaki‐Yatsugi S, Ni JW, Yatsugi S, Sakamoto S, Okada M, Shimizu‐Sasamata M, Yamaguchi T ( 2002 ) YM872: a selective, potent and highly water‐soluble alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid receptor antagonist. CNS Drug Rev 8: 337 – 352en_US
dc.identifier.citedreferenceTurrigiano GG ( 2008 ) The self‐tuning neuron: synaptic scaling of excitatory synapses. Cell 135: 422 – 435en_US
dc.identifier.citedreferenceVan Voorhies WA, Ward S ( 2000 ) Broad oxygen tolerance in the nematode Caenorhabditis elegans. J Exp Biol 203 (Part 16): 2467 – 2478en_US
dc.identifier.citedreferenceWang GJ, Kang L, Kim JE, Maro GS, Xu XZ, Shen K ( 2010 ) GRLD‐1 regulates cell‐wide abundance of glutamate receptor through post‐transcriptional regulation. Nat Neurosci 13: 1489 – 1495en_US
dc.identifier.citedreferenceWang R, Walker CS, Brockie PJ, Francis MM, Mellem JE, Madsen DM, Maricq AV ( 2008 ) Evolutionary conserved role for TARPs in the gating of glutamate receptors and tuning of synaptic function. Neuron 59: 997 – 1008en_US
dc.identifier.citedreferenceWard A, Liu J, Feng Z, Xu XZ ( 2008 ) Light‐sensitive neurons and channels mediate phototaxis in C. elegans. Nat Neurosci 11: 916 – 922en_US
dc.identifier.citedreferenceWhitfield CW, Benard C, Barnes T, Hekimi S, Kim SK ( 1999 ) Basolateral localization of the Caenorhabditis elegans epidermal growth factor receptor in epithelial cells by the PDZ protein LIN‐10. Mol Biol Cell 10: 2087 – 2100en_US
dc.identifier.citedreferenceXue D, Huang ZG, Barnes K, Lesiuk HJ, Smith KE, Buchan AM ( 1994 ) Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical infarction. J Cereb Blood Flow Metab 14: 251 – 261en_US
dc.identifier.citedreferenceZheng Y, Brockie PJ, Mellem JE, Madsen DM, Maricq AV ( 1999 ) Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR‐1 ionotropic glutamate receptor. Neuron 24: 347 – 361en_US
dc.identifier.citedreferenceZivkovic G, Buck LT ( 2010 ) Regulation of AMPA receptor currents by mitochondrial ATP‐sensitive K+ channels in anoxic turtle neurons. J Neurophysiol 104: 1913 – 1922en_US
dc.identifier.citedreferenceAnderson GL, Dusenbery DB ( 1977 ) Critical‐oxygen tension of Caenorhabditis elegans. J Nematol 9: 253 – 254en_US
dc.identifier.citedreferenceAragones J, Fraisl P, Baes M, Carmeliet P ( 2009 ) Oxygen sensors at the crossroad of metabolism. Cell Metab 9: 11 – 22en_US
dc.identifier.citedreferenceArundine M, Tymianski M ( 2004 ) Molecular mechanisms of glutamate‐dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61: 657 – 668en_US
dc.identifier.citedreferenceBishop T, Lau KW, Epstein AC, Kim SK, Jiang M, O‧Rourke D, Pugh CW, Gleadle JM, Taylor MS, Hodgkin J, Ratcliffe PJ ( 2004 ) Genetic analysis of pathways regulated by the von Hippel‐Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2: e289en_US
dc.identifier.citedreferenceBranicky RS, Schafer WR ( 2008 ) Oxygen homeostasis: how the worm adapts to variable oxygen levels. Curr Biol 18: R559 – R560en_US
dc.identifier.citedreferenceBruick RK, McKnight SL ( 2001 ) A conserved family of prolyl‐4‐hydroxylases that modify HIF. Science (New York, NY) 294: 1337 – 1340en_US
dc.identifier.citedreferenceBuchan AM, Li H, Cho S, Pulsinelli WA ( 1991 ) Blockade of the AMPA receptor prevents CA1 hippocampal injury following severe but transient forebrain ischemia in adult rats. Neurosci Lett 132: 255 – 258en_US
dc.identifier.citedreferenceBurbea M, Dreier L, Dittman JS, Grunwald ME, Kaplan JM ( 2002 ) Ubiquitin and AP180 regulate the abundance of GLR‐1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35: 107 – 120en_US
dc.identifier.citedreferenceChang AJ, Bargmann CI ( 2008 ) Hypoxia and the HIF‐1 transcriptional pathway reorganize a neuronal circuit for oxygen‐dependent behavior in Caenorhabditis elegans. Proc Natl Acad Sci USA 105: 7321 – 7326en_US
dc.identifier.citedreferenceChang HC, Rongo C ( 2005 ) Cytosolic tail sequences and subunit interactions are critical for synaptic localization of glutamate receptors. J Cell Sci 118 (Part 9): 1945 – 1956en_US
dc.identifier.citedreferenceCheung BH, Arellano‐Carbajal F, Rybicki I, de Bono M ( 2004 ) Soluble guanylate cyclases act in neurons exposed to the body fluid to promote C. elegans aggregation behavior. Curr Biol 14: 1105 – 1111en_US
dc.identifier.citedreferenceCheung BH, Cohen M, Rogers C, Albayram O, de Bono M ( 2005 ) Experience‐dependent modulation of C. elegans behavior by ambient oxygen. Curr Biol 15: 905 – 917en_US
dc.identifier.citedreferenceChowdhury R, McDonough MA, Mecinovic J, Loenarz C, Flashman E, Hewitson KS, Domene C, Schofield CJ ( 2009 ) Structural basis for binding of hypoxia‐inducible factor to the oxygen‐sensing prolyl hydroxylases. Structure 17: 981 – 989en_US
dc.identifier.citedreferenceCollins TJ ( 2007 ) ImageJ for microscopy. BioTechniques 43 (1 Suppl): 25 – 30en_US
dc.identifier.citedreferenceCummins EP, Berra E, Comerford KM, Ginouves A, Fitzgerald KT, Seeballuck F, Godson C, Nielsen JE, Moynagh P, Pouyssegur J, Taylor CT ( 2006 ) Prolyl hydroxylase‐1 negatively regulates IkappaB kinase‐beta, giving insight into hypoxia‐induced NFkappaB activity. Proc Natl Acad Sci USA 103: 18154 – 18159en_US
dc.identifier.citedreferenceDarby C, Cosma CL, Thomas JH, Manoil C ( 1999 ) Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Natl Acad Sci USA 96: 15202 – 15207en_US
dc.identifier.citedreferenceEmtage L, Chang H, Tiver R, Rongo C ( 2009 ) MAGI‐1 modulates AMPA receptor synaptic localization and behavioral plasticity in response to prior experience. PloS One 4: e4613en_US
dc.identifier.citedreferenceEpstein AC, Gleadle JM, McNeill LA, Hewitson KS, O‧Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ ( 2001 ) C. elegans EGL‐9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43 – 54en_US
dc.identifier.citedreferenceFandrey J, Gassmann M ( 2009 ) Oxygen sensing and the activation of the hypoxia inducible factor 1 (HIF‐1)—invited article. Adv Exp Med Biol 648: 197 – 206en_US
dc.identifier.citedreferenceFong GH, Takeda K ( 2008 ) Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ 15: 635 – 641en_US
dc.identifier.citedreferenceFu J, Menzies K, Freeman RS, Taubman MB ( 2007 ) EGLN3 prolyl hydroxylase regulates skeletal muscle differentiation and myogenin protein stability. J Biol Chem 282: 12410 – 12418en_US
dc.identifier.citedreferenceFu J, Taubman MB ( 2010 ) Prolyl hydroxylase EGLN3 regulates skeletal myoblast differentiation through an NF‐kappaB‐dependent pathway. J Biol Chem 285: 8927 – 8935en_US
dc.identifier.citedreferenceGill R ( 1994 ) The pharmacology of alpha‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole propionate (AMPA)/kainate antagonists and their role in cerebral ischaemia. Cerebrovasc Brain Metab Rev 6: 225 – 256en_US
dc.identifier.citedreferenceGlodowski DR, Chen CC, Schaefer H, Grant BD, Rongo C ( 2007 ) RAB‐10 regulates glutamate receptor recycling in a cholesterol‐dependent endocytosis pathway. Mol Biol Cell 18: 4387 – 4396en_US
dc.identifier.citedreferenceGlodowski DR, Wright T, Martinowich K, Chang HC, Beach D, Rongo C ( 2005 ) Distinct LIN‐10 domains are required for its neuronal function, its epithelial function, and its synaptic localization. Mol Biol Cell 16: 1417 – 1426en_US
dc.identifier.citedreferenceGort EH, van Haaften G, Verlaan I, Groot AJ, Plasterk RH, Shvarts A, Suijkerbuijk KP, van Laar T, van der Wall E, Raman V, van Diest PJ, Tijsterman M, Vooijs M ( 2008 ) The TWIST1 oncogene is a direct target of hypoxia‐inducible factor‐2alpha. Oncogene 27: 1501 – 1510en_US
dc.identifier.citedreferenceGottschalk A, Schafer WR ( 2006 ) Visualization of integral and peripheral cell surface proteins in live Caenorhabditis elegans. J Neurosci Methods 154: 68 – 79en_US
dc.identifier.citedreferenceGray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI ( 2004 ) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430: 317 – 322en_US
dc.identifier.citedreferenceGrunwald ME, Mellem JE, Strutz N, Maricq AV, Kaplan JM ( 2004 ) Clathrin‐mediated endocytosis is required for compensatory regulation of GLR‐1 glutamate receptors after activity blockade. Proc Natl Acad Sci USA 101: 3190 – 3195en_US
dc.identifier.citedreferenceHart AC, Sims S, Kaplan JM ( 1995 ) Synaptic code for sensory modalities revealed by C. elegans GLR‐1 glutamate receptor. Nature 378: 82 – 84en_US
dc.identifier.citedreferenceHayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R ( 2000 ) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science (New York, NY) 287: 2262 – 2267en_US
dc.identifier.citedreferenceIvan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin Jr WG ( 2001 ) HIFalpha targeted for VHL‐mediated destruction by proline hydroxylation: implications for O2 sensing. Science (New York, NY) 292: 464 – 468en_US
dc.identifier.citedreferenceJaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ ( 2001 ) Targeting of HIF‐alpha to the von Hippel‐Lindau ubiquitylation complex by O2‐regulated prolyl hydroxylation. Science (New York, NY) 292: 468 – 472en_US
dc.identifier.citedreferenceJiang H, Guo R, Powell‐Coffman JA ( 2001 ) The Caenorhabditis elegans hif‐1 gene encodes a bHLH‐PAS protein that is required for adaptation to hypoxia. Proc Natl Acad Sci USA 98: 7916 – 7921en_US
dc.identifier.citedreferenceJuo P, Harbaugh T, Garriga G, Kaplan JM ( 2007 ) CDK‐5 regulates the abundance of GLR‐1 glutamate receptors in the ventral cord of Caenorhabditis elegans. Mol Biol Cell 18: 3883 – 3893en_US
dc.identifier.citedreferenceKhaldi A, Chiueh CC, Bullock MR, Woodward JJ ( 2002 ) The significance of nitric oxide production in the brain after injury. Ann NY Acad Sci 962: 53 – 59en_US
dc.identifier.citedreferenceKinoshita E, Kinoshita‐Kikuta E, Takiyama K, Koike T ( 2006 ) Phosphate‐binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5: 749 – 757en_US
dc.identifier.citedreferenceKoditz J, Nesper J, Wottawa M, Stiehl DP, Camenisch G, Franke C, Myllyharju J, Wenger RH, Katschinski DM ( 2007 ) Oxygen‐dependent ATF‐4 stability is mediated by the PHD3 oxygen sensor. Blood 110: 3610 – 3617en_US
dc.identifier.citedreferenceKramer LB, Shim J, Previtera ML, Isack NR, Lee MC, Firestein BL, Rongo C ( 2010 ) UEV‐1 is an ubiquitin‐conjugating enzyme variant that regulates glutamate receptor trafficking in C. elegans neurons. PloS One 5: e14291en_US
dc.identifier.citedreferenceLee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP, Farese RV, Freeman RS, Carter BD, Kaelin Jr WG, Schlisio S ( 2005 ) Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8: 155 – 167en_US
dc.identifier.citedreferenceLees GJ ( 2000 ) Pharmacology of AMPA/kainate receptor ligands and their therapeutic potential in neurological and psychiatric disorders. Drugs 59: 33 – 78en_US
dc.identifier.citedreferenceLi H, Buchan AM ( 1993 ) Treatment with an AMPA antagonist 12 hours following severe normothermic forebrain ischemia prevents CA1 neuronal injury. J Cereb Blood Flow Metab 13: 933 – 939en_US
dc.identifier.citedreferenceLimbrick Jr DD, Sombati S, DeLorenzo RJ ( 2003 ) Calcium influx constitutes the ionic basis for the maintenance of glutamate‐induced extended neuronal depolarization associated with hippocampal neuronal death. Cell Calcium 33: 69 – 81en_US
dc.identifier.citedreferenceLissin DV, Carroll RC, Nicoll RA, Malenka RC, von Zastrow M ( 1999 ) Rapid, activation‐induced redistribution of ionotropic glutamate receptors in cultured hippocampal neurons [published erratum appears in J Neurosci 1999 Apr 15;19(8):3275]. J Neurosci 19: 1263 – 1272en_US
dc.identifier.citedreferenceLissin DV, Gomperts SN, Carroll RC, Christine CW, Kalman D, Kitamura M, Hardy S, Nicoll RA, Malenka RC, von Zastrow M ( 1998 ) Activity differentially regulates the surface expression of synaptic AMPA and NMDA glutamate receptors. Proc Natl Acad Sci USA 95: 7097 – 7102en_US
dc.identifier.citedreferenceMammen AL, Kameyama K, Roche KW, Huganir RL ( 1997 ) Phosphorylation of the alpha‐amino‐3‐hydroxy‐5‐methylisoxazole4‐propionic acid receptor GluR1 subunit by calcium/calmodulin‐dependent kinase II. J Biol Chem 272: 32528 – 32533en_US
dc.identifier.citedreferenceMaricq AV, Peckol E, Driscoll M, Bargmann CI ( 1995 ) Mechanosensory signalling in C. elegans mediated by the GLR‐1 glutamate receptor. Nature 378: 78 – 81en_US
dc.identifier.citedreferenceMaxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ ( 1999 ) The tumour suppressor protein VHL targets hypoxia‐inducible factors for oxygen‐dependent proteolysis. Nature 399: 271 – 275en_US
dc.identifier.citedreferenceMcDonough MA, Li V, Flashman E, Chowdhury R, Mohr C, Lienard BM, Zondlo J, Oldham NJ, Clifton IJ, Lewis J, McNeill LA, Kurzeja RJ, Hewitson KS, Yang E, Jordan S, Syed RS, Schofield CJ ( 2006 ) Cellular oxygen sensing: crystal structure of hypoxia‐inducible factor prolyl hydroxylase (PHD2). Proc Natl Acad Sci USA 103: 9814 – 9819en_US
dc.identifier.citedreferenceMehta SL, Manhas N, Raghubir R ( 2007 ) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev 54: 34 – 66en_US
dc.identifier.citedreferenceMellem JE, Brockie PJ, Zheng Y, Madsen DM, Maricq AV ( 2002 ) Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 36: 933 – 944en_US
dc.identifier.citedreferenceMin JH, Yang H, Ivan M, Gertler F, Kaelin Jr WG, Pavletich NP ( 2002 ) Structure of an HIF‐1alpha‐pVHL complex: hydroxyproline recognition in signaling. Science (New York, NY) 296: 1886 – 1889en_US
dc.identifier.citedreferenceNellgard B, Wieloch T ( 1992 ) Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient severe cerebral ischemia. J Cereb Blood Flow Metab 12: 2 – 11en_US
dc.identifier.citedreference‘O‧Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL ( 1998 ) Activity‐dependent modulation of synaptic AMPA receptor accumulation [see comments]. Neuron 21: 1067 – 1078en_US
dc.identifier.citedreferenceOhh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG ( 2000 ) Ubiquitination of hypoxia‐inducible factor requires direct binding to the beta‐domain of the von Hippel‐Lindau protein. Nat Cell Biol 2: 423 – 427en_US
dc.identifier.citedreferencePamenter ME, Shin DS, Cooray M, Buck LT ( 2008 ) Mitochondrial ATP‐sensitive K+ channels regulate NMDAR activity in the cortex of the anoxic western painted turtle. J Physiol 586: 1043 – 1058en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.