Show simple item record

Cytoprotection by pre‐emptive conditional phosphorylation of translation initiation factor 2

dc.contributor.authorLu, Phoebe Den_US
dc.contributor.authorJousse, Célineen_US
dc.contributor.authorMarciniak, Stefan Jen_US
dc.contributor.authorZhang, Yuhongen_US
dc.contributor.authorNovoa, Isabelen_US
dc.contributor.authorScheuner, Donalynen_US
dc.contributor.authorKaufman, Randal Jen_US
dc.contributor.authorRon, Daviden_US
dc.contributor.authorHarding, Heather Pen_US
dc.date.accessioned2014-01-08T20:34:24Z
dc.date.available2014-01-08T20:34:24Z
dc.date.issued2004-01-14en_US
dc.identifier.citationLu, Phoebe D; Jousse, Céline ; Marciniak, Stefan J; Zhang, Yuhong; Novoa, Isabel; Scheuner, Donalyn; Kaufman, Randal J; Ron, David; Harding, Heather P (2004). "Cytoprotection by preâ emptive conditional phosphorylation of translation initiation factor 2." The EMBO Journal 23(1): 169-179. <http://hdl.handle.net/2027.42/102068>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102068
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherTranslationen_US
dc.subject.otherSignal Transductionen_US
dc.subject.otherReactive Oxygen Speciesen_US
dc.subject.otherProtein Kinasesen_US
dc.subject.otherPreconditioningen_US
dc.titleCytoprotection by pre‐emptive conditional phosphorylation of translation initiation factor 2en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid14713949en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102068/1/emboj7600030.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102068/2/emboj7600030-sup-0001.pdf
dc.identifier.doi10.1038/sj.emboj.7600030en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceNovoa I, Zeng H, Harding H, Ron D 2001 Feedback inhibition of the unfolded protein response by GADD34‐mediated dephosphorylation of eIF2α. J Cell Biol 153: 1011 – 1022en_US
dc.identifier.citedreferenceHinnebusch AG 2000 Mechanism and regulation of initiator methionyl‐tRNA binding to ribosomes. In Translational Control of Gene Expression, Sonenberg N, Hershey JWB, Mathews MB (eds) pp 185 – 243. Cold Spring Harbor: CSHL Pressen_US
dc.identifier.citedreferenceKaufman RJ 2000 The double‐stranded RNA‐activated protein kinase PKR. In Translational Control of Gene Expression, Sonenberg N, Hershey JWB, Mathews MB (eds) pp 503 – 527. Cold Spring Harbor: CSHL Pressen_US
dc.identifier.citedreferenceKaufman RJ 2002 Orchestrating the unfolded protein response in health and disease. J Clin Invest 110: 1389 – 1398en_US
dc.identifier.citedreferenceKumar R, Azam S, Sullivan J, Owen C, Cavener D, Zhang P, Ron D, Harding H, Chen J, Han A, White B, Krause G, DeGracia D 2001 Brain ischemia and reperfusion activates the eukaryotic initiation factor 2α kinase, PERK. J Neurochem 77: 1418 – 1421en_US
dc.identifier.citedreferenceLandau N, Littman D 1992 Packaging system for rapid production of murine leukemia virus vectors with variable tropism. J Virol 66: 5110 – 5113en_US
dc.identifier.citedreferenceLiu CY, Schroder M, Kaufman RJ 2000 Ligand‐independent dimerization activates the stress‐response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275: 24881 – 24885en_US
dc.identifier.citedreferenceLockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL 1996 Expression monitoring by hybridization to high‐density oligonucleotide arrays. Nat Biotechnol 14: 1675 – 1680en_US
dc.identifier.citedreferenceMaher P, Davis JB 1996 The role of monoamine metabolism in oxidative glutamate toxicity. J Neurosci 16: 6394 – 6401en_US
dc.identifier.citedreferenceMcCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ 2001 Gadd153 sensitizes cells to endoplasmic reticulum stress by down‐regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21: 1249 – 1259en_US
dc.identifier.citedreferenceMiyamoto M, Murphy TH, Schnaar RL, Coyle JT 1989 Antioxidants protect against glutamate‐induced cytotoxicity in a neuronal cell line. J Pharmacol Exp Ther 250: 1132 – 1140en_US
dc.identifier.citedreferenceMorgenstern JP, Land H 1990 Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper‐free packaging cell line. Nucleic Acids Res 18: 3587 – 3596en_US
dc.identifier.citedreferenceMorimoto BH, Koshland Jr DE 1990 Induction and expression of long‐ and short‐term neurosecretory potentiation in a neural cell line. Neurone 5: 875 – 880en_US
dc.identifier.citedreferenceMurphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT 1989 Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neurone 2: 1547 – 1558en_US
dc.identifier.citedreferenceNovoa I, Zhang Y, Zeng H, Jungreis R, Harding HP, Ron D 2003 Stress‐induced gene expression requires programmed recovery from translational repression. EMBO J 22: 1180 – 1187en_US
dc.identifier.citedreferenceRon D, Harding H 2000 PERK and translational control by stress in the endoplasmic reticulum. In Translational Control, Hershey J, Mathews M, Sonenberg N (eds) pp 547 – 560. Cold Spring Harbor: CSHL Pressen_US
dc.identifier.citedreferenceScheuner D, Song B, McEwen E, Gillespie P, Saunders T, Bonner‐Weir S, Kaufman RJ 2001 Translational control is required for the unfolded protein response and in‐vivo glucose homeostasis. Mol Cell 7: 1165 – 1176en_US
dc.identifier.citedreferenceSchubert D, Piasecki D 2001 Oxidative glutamate toxicity can be a component of the excitotoxicity cascade. J Neurosci 21: 7455 – 7462en_US
dc.identifier.citedreferenceSpencer DM, Wandless TJ, Schreiber SL, Crabtree GR 1993 Controlling signal transduction with synthetic ligands. Science 262: 1019 – 1024en_US
dc.identifier.citedreferenceSrivastava SP, Kumar KU, Kaufman RJ 1998 Phosphorylation of eukaryotic translation initiation factor 2 mediates apoptosis in response to activation of the double‐stranded RNA‐dependent protein kinase. J Biol Chem 273: 2416 – 2423en_US
dc.identifier.citedreferenceTan S, Sagara Y, Liu Y, Maher P, Schubert D 1998a The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141: 1423 – 1432en_US
dc.identifier.citedreferenceTan S, Somia N, Maher P, Schubert D 2001 Regulation of antioxidant metabolism by translation initiation factor 2alpha. J Cell Biol 152: 997 – 1006en_US
dc.identifier.citedreferenceTan S, Wood M, Maher P 1998b Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J Neurochem 71: 95 – 105en_US
dc.identifier.citedreferenceZhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K, Cavener DR 2002a The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22: 3864 – 3874en_US
dc.identifier.citedreferenceZhang P, McGrath BC, Reinert J, Olsen DS, Lei L, Gill S, Wek SA, Vattem KM, Wek RC, Kimball SR, Jefferson LS, Cavener DR 2002b The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 22: 6681 – 6688en_US
dc.identifier.citedreferenceZinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D 1998 CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12: 982 – 995en_US
dc.identifier.citedreferenceAnderson ME 1985 Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol 113: 548 – 555en_US
dc.identifier.citedreferenceBertolotti A, Zhang Y, Hendershot L, Harding H, Ron D 2000 Dynamic interaction of BiP and the ER stress transducers in the unfolded protein response. Nat Cell Biol 2: 326 – 332en_US
dc.identifier.citedreferenceBrostrom CO, Brostrom MA 1998 Regulation of translational initiation during cellular responses to stress. Prog Nucleic Acid Res Mol Biol 58: 79 – 125en_US
dc.identifier.citedreferenceChen J 2000 Heme‐regulated eIF2α kinase. In Translational Control of Gene Expression, Sonenberg N, Hershey JWB, and Mathews MB (eds) pp 529 – 546. Cold Spring Harbor: CSHL Pressen_US
dc.identifier.citedreferenceDavis JB, Maher P 1994 Protein kinase C activation inhibits glutamate‐induced cytotoxicity in a neuronal cell line. Brain Res 652: 169 – 173en_US
dc.identifier.citedreferenceDeGracia DJ, Kumar R, Owen CR, Krause GS, White BC 2002 Molecular pathways of protein synthesis inhibition during brain reperfusion: implications for neuronal survival or death. J Cereb Blood Flow Metab 22: 127 – 141en_US
dc.identifier.citedreferenceDever TE 2002 Gene‐specific regulation by general translation factors. Cell 108: 545 – 556en_US
dc.identifier.citedreferenceFrerichs KU, Hallenbeck JM 1998 Hibernation in ground squirrels induces state and species‐specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 18: 168 – 175en_US
dc.identifier.citedreferenceFrerichs KU, Kennedy C, Sokoloff L, Hallenbeck JM 1994 Local cerebral blood flow during hibernation, a model of natural tolerance to ‘cerebral ischemia’. J Cereb Blood Flow Metab 14: 193 – 205en_US
dc.identifier.citedreferenceFrerichs KU, Smith CB, Brenner M, DeGracia DJ, Krause GS, Marrone L, Dever TE, Hallenbeck JM 1998 Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95: 14511 – 14516en_US
dc.identifier.citedreferenceGriffith OW 1980 Determination of glutathione and glutathione disulfide using glutathione reductase and 2‐vinylpyridine. Anal Biochem 106: 207 – 212en_US
dc.identifier.citedreferenceHarding H, Novoa I, Zhang Y, Zeng H, Wek RC, Schapira M, Ron D 2000a Regulated translation initiation controls stress‐induced gene expression in mammalian cells. Mol Cell 6: 1099 – 1108en_US
dc.identifier.citedreferenceHarding H, Zeng H, Zhang Y, Jungreis R, Chung P, Plesken H, Sabatini D, Ron D 2001 Diabetes mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in survival of secretory cells. Mol Cell 7: 1153 – 1163en_US
dc.identifier.citedreferenceHarding H, Zhang Y, Bertolotti A, Zeng H, Ron D 2000b Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5: 897 – 904en_US
dc.identifier.citedreferenceHarding H, Zhang Y, Zeng H, Novoa I, Lu P, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl D, Bell J, Hettmann T, Leiden J, Ron D 2003 An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619 – 633en_US
dc.identifier.citedreferenceHarding HP, Calfon M, Urano F, Novoa I, Ron D 2002 Transcriptional and translational control in the mammalian unfolded protein response. Annu Rev Cell Dev Biol 18: 575 – 599en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.