Show simple item record

Activation of B‐Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601

dc.contributor.authorZhang, Bao‐hongen_US
dc.contributor.authorGuan, Kun‐liangen_US
dc.date.accessioned2014-01-08T20:34:25Z
dc.date.available2014-01-08T20:34:25Z
dc.date.issued2000-10-16en_US
dc.identifier.citationZhang, Bao‐hong ; Guan, Kun‐liang (2000). "Activation of Bâ Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601." The EMBO Journal 19(20): 5429-5439. <http://hdl.handle.net/2027.42/102072>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102072
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherPhosphorylationen_US
dc.subject.otherRasen_US
dc.subject.otherKinase Activityen_US
dc.subject.otherB‐Rafen_US
dc.titleActivation of B‐Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid11032810en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102072/1/emboj7593357.pdf
dc.identifier.doi10.1093/emboj/19.20.5429en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceShoji S, Ericsson LH, Walsh KA, Fischer EH and Titani K ( 1983 ) Amino acid sequence of the catalytic subunit of bovine type II adenosine cyclic 3′,5′‐phosphate dependent protein kinase. Biochemistry, 22, 3702 – 3709.en_US
dc.identifier.citedreferenceRoy S, McPherson RA, Apolloni A, Yan J, Lane A, Clyde‐Smith J and Hancock JF ( 1998 ) 14‐3‐3 facilitates Ras‐dependent Raf‐1 activation in vitro and in vivo. Mol Cell Biol, 18, 3947 – 3955.en_US
dc.identifier.citedreferenceSchlessinger J and Ullrich A ( 1992 ) Growth factor signaling by receptor tyrosine kinases. Neuron, 9, 383 – 391.en_US
dc.identifier.citedreferenceSchramm K, Niehof M, Radziwill G, Rommel C and Moelling K ( 1994 ) Phosphorylation of c‐Raf‐1 by protein kinase A interferes with activation. Biochem Biophys Res Commun, 201, 740 – 747.en_US
dc.identifier.citedreferenceSternberg PW and Han M ( 1998 ) Genetics of RAS signaling in C.elegans. Trends Genet, 14, 466 – 472.en_US
dc.identifier.citedreferenceStewart S, Sundaram M, Zhang Y, Lee J, Han M and Guan KL ( 1999 ) Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization. Mol Cell Biol, 19, 5523 – 5534.en_US
dc.identifier.citedreferenceSugimoto T, Stewart S, Han M and Guan KL ( 1998 ) The kinase suppressor of Ras (KSR) modulates growth factor and Ras signaling by uncoupling Elk‐1 phosphorylation from MAP kinase activation. EMBO J, 17, 1717 – 1727.en_US
dc.identifier.citedreferenceToker A and Newton AC ( 2000 ) Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK‐2 site. J Biol Chem, 275, 8271 – 8274.en_US
dc.identifier.citedreferenceTzivion G, Luo Z and Avruch J ( 1998 ) A dimeric 14‐3‐3 protein is an essential cofactor for Raf kinase activity. Nature, 394, 88 – 92.en_US
dc.identifier.citedreferenceVojtek AB, Hollenberg SM and Cooper JA ( 1993 ) Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell, 74, 205 – 214.en_US
dc.identifier.citedreferenceVossler MR, Yao H, York RD, Pan MG, Rim CS and Stork PJ ( 1997 ) cAMP activates MAP kinase and Elk‐1 through a B‐Raf‐ and Rap1‐dependent pathway. Cell, 89, 73 – 82.en_US
dc.identifier.citedreferenceWeber CK, Slupsky JR, Herrmann C, Schuler M, Rapp UR and Block C ( 2000 ) Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Oncogene, 19, 169 – 176.en_US
dc.identifier.citedreferenceWojnowski L, Zimmer AM, Beck TW, Hahn H, Bernal R, Rapp UR and Zimmer A ( 1997 ) Endothelial apoptosis in Braf‐deficient mice [see comments]. Nature Genet, 16, 293 – 297.en_US
dc.identifier.citedreferenceWu J, Dent P, Jelinek T, Wolfman A, Weber MJ and Sturgill TW ( 1993 ) Inhibition of the EGF‐activated MAP kinase signaling pathway by adenosine 3′,5′‐monophosphate [see comments]. Science, 262, 1065 – 1069.en_US
dc.identifier.citedreferenceYao B, Zhang Y, Delikat S, Mathias S, Basu S and Kolesnick R ( 1995 ) Phosphorylation of Raf by ceramide‐activated protein kinase. Nature, 378, 307 – 310.en_US
dc.identifier.citedreferenceZhang Y et al. ( 1997 ) Kinase suppressor of Ras is ceramide‐activated protein kinase. Cell, 89, 63 – 72.en_US
dc.identifier.citedreferenceZheng CF and Guan KL ( 1994 ) Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J, 13, 1123 – 1131.en_US
dc.identifier.citedreferenceZimmermann S and Moelling K ( 1999 ) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science, 286, 1741 – 1744.en_US
dc.identifier.citedreferenceAlessi DR and Cohen P ( 1998 ) Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev, 8, 55 – 62.en_US
dc.identifier.citedreferenceAlessi DR, Saito Y, Campbell DG, Cohen P, Sithanandam G, Rapp U, Ashworth A, Marshall CJ and Cowley S ( 1994 ) Identification of the sites in MAP kinase kinase‐1 phosphorylated by p74raf‐1. EMBO J, 13, 1610 – 1619.en_US
dc.identifier.citedreferenceCai H, Smola U, Wixler V, Eisenmann‐Tappe I, Diaz‐Meco MT, Moscat J, Rapp U and Cooper GM ( 1997 ) Role of diacylglycerol‐regulated protein kinase C isotypes in growth factor activation of the Raf‐1 protein kinase. Mol Cell Biol, 17, 732 – 741.en_US
dc.identifier.citedreferenceCarroll MP and May WS ( 1994 ) Protein kinase C‐mediated serine phosphorylation directly activates Raf‐1 in murine hematopoietic cells. J Biol Chem, 269, 1249 – 1256.en_US
dc.identifier.citedreferenceCasamayor A, Morrice NA and Alessi DR ( 1999 ) Phosphorylation of Ser‐241 is essential for the activity of 3‐phosphoinositide‐dependent protein kinase‐1: identification of five sites of phosphorylation in vivo. Biochem J, 342, 287 – 292.en_US
dc.identifier.citedreferenceCatling AD, Reuter CW, Cox ME, Parsons SJ and Weber MJ ( 1994 ) Partial purification of a mitogen‐activated protein kinase kinase activator from bovine brain. Identification as B‐Raf or a B‐Raf‐associated activity. J Biol Chem, 269, 30014 – 30021.en_US
dc.identifier.citedreferenceCook SJ and McCormick F ( 1993 ) Inhibition by cAMP of Ras‐dependent activation of Raf [see comments]. Science, 262, 1069 – 1072.en_US
dc.identifier.citedreferenceCutler RE,Jr, Stephens RM, Saracino MR and Morrison DK ( 1998 ) Autoregulation of the Raf‐1 serine/threonine kinase. Proc Natl Acad Sci USA, 95, 9214 – 9219.en_US
dc.identifier.citedreferenceDaum G, Eisenmann‐Tappe I, Fries HW, Troppmair J and Rapp UR ( 1994 ) The ins and outs of Raf kinases. Trends Biochem Sci, 19, 474 – 480.en_US
dc.identifier.citedreferenceEnglish J, Pearson G, Wilsbacher J, Swantek J, Karandikar M, Xu S and Cobb MH ( 1999 ) New insights into the control of MAP kinase pathways. Exp Cell Res, 253, 255 – 270.en_US
dc.identifier.citedreferenceErhardt P, Schremser EJ and Cooper GM ( 1999 ) B‐Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol, 19, 5308 – 5315.en_US
dc.identifier.citedreferenceFabian JR, Daar IO and Morrison DK ( 1993 ) Critical tyrosine residues regulate the enzymatic and biological activity of Raf‐1 kinase. Mol Cell Biol, 13, 7170 – 7179.en_US
dc.identifier.citedreferenceGorman C, Skinner RH, Skelly JV, Neidle S and Lowe PN ( 1996 ) Equilibrium and kinetic measurements reveal rapidly reversible binding of Ras to Raf. J Biol Chem, 271, 6713 – 6719.en_US
dc.identifier.citedreferenceGrammatikakis N, Lin JH, Grammatikakis A, Tsichlis PN and Cochran BH ( 1999 ) p50(cdc37) acting in concert with Hsp90 is required for Raf‐1 function. Mol Cell Biol, 19, 1661 – 1672.en_US
dc.identifier.citedreferenceHagemann C and Rapp UR ( 1999 ) Isotype‐specific functions of Raf kinases. Exp Cell Res, 253, 34 – 46.en_US
dc.identifier.citedreferenceHill CS and Treisman R ( 1995 ) Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell, 80, 199 – 211.en_US
dc.identifier.citedreferenceHughes K, Nikolakaki E, Plyte SE, Totty NF and Woodgett JR ( 1993 ) Modulation of the glycogen synthase kinase‐3 family by tyrosine phosphorylation. EMBO J, 12, 803 – 808.en_US
dc.identifier.citedreferenceInouye K, Mizutani S, Koide H and Kaziro Y ( 2000 ) Formation of the Ras dimer is essential for Raf‐1 activation. J Biol Chem, 275, 3737 – 3740.en_US
dc.identifier.citedreferenceJelinek T, Dent P, Sturgill TW and Weber MJ ( 1996 ) Ras‐induced activation of Raf‐1 is dependent on tyrosine phosphorylation [published erratum appears in Mol. Cell. Biol., 17, 2971, 1997]. Mol Cell Biol, 16, 1027 – 1034.en_US
dc.identifier.citedreferenceKing AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S and Marshall MS ( 1998 ) The protein kinase Pak3 positively regulates Raf‐1 activity through phosphorylation of serine 338. Nature, 396, 180 – 183.en_US
dc.identifier.citedreferenceKolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D and Rapp UR ( 1993 ) Protein kinase C α activates RAF‐1 by direct phosphorylation. Nature, 364, 249 – 252.en_US
dc.identifier.citedreferenceLewis TS, Shapiro PS and Ahn NG ( 1998 ) Signal transduction through MAP kinase cascades. Adv Cancer Res, 74, 49 – 139.en_US
dc.identifier.citedreferenceMacNicol MC and MacNicol AM ( 1999 ) Nerve growth factor‐stimulated B‐Raf catalytic activity is refractory to inhibition by cAMP‐dependent protein kinase. J Biol Chem, 274, 13193 – 13197.en_US
dc.identifier.citedreferenceMacNicol MC, Muslin AJ and MacNicol AM ( 2000 ) Disruption of the 14‐3‐3 binding site within the B‐Raf kinase domain uncouples catalytic activity from PC12 cell differentiation. J Biol Chem, 275, 3803 – 3809.en_US
dc.identifier.citedreferenceMagnuson NS, Beck T, Vahidi H, Hahn H, Smola U and Rapp UR ( 1994 ) The Raf‐1 serine/threonine protein kinase. Semin Cancer Biol, 5, 247 – 253.en_US
dc.identifier.citedreferenceMarshall CJ ( 1995 ) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal‐regulated kinase activation. Cell, 80, 179 – 185.en_US
dc.identifier.citedreferenceMason CS, Springer CJ, Cooper RG, Superti‐Furga G, Marshall CJ and Marais R ( 1999 ) Serine and tyrosine phosphorylations cooperate in Raf‐1, but not B‐Raf activation. EMBO J, 18, 2137 – 2148.en_US
dc.identifier.citedreferenceMichaud NR, Fabian JR, Mathes KD and Morrison DK ( 1995 ) 14‐3‐3 is not essential for Raf‐1 function: identification of Raf‐1 proteins that are biologically activated in a 14‐3‐3‐ and Ras‐independent manner. Mol Cell Biol, 15, 3390 – 3397.en_US
dc.identifier.citedreferenceMischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M, Philipp A and Kolch W ( 1996 ) Negative regulation of Raf‐1 by phosphorylation of serine 621. Mol Cell Biol, 16, 5409 – 5418.en_US
dc.identifier.citedreferenceMorrison DK and Cutler RE ( 1997 ) The complexity of Raf‐1 regulation. Curr Opin Cell Biol, 9, 174 – 179.en_US
dc.identifier.citedreferenceMorrison DK, Heidecker G, Rapp UR and Copeland TD ( 1993 ) Identification of the major phosphorylation sites of the Raf‐1 kinase. J Biol Chem, 268, 17309 – 17316.en_US
dc.identifier.citedreferenceMott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM and Campbell SL ( 1996 ) The solution structure of the Raf‐1 cysteine‐rich domain: a novel ras and phospholipid binding site. Proc Natl Acad Sci USA, 93, 8312 – 8317.en_US
dc.identifier.citedreferenceMuslin AJ, Tanner JW, Allen PM and Shaw AS ( 1996 ) Interaction of 14‐3‐3 with signaling proteins is mediated by the recognition of phosphoserine. Cell, 84, 889 – 897.en_US
dc.identifier.citedreferenceNassar N, Horn G, Herrmann C, Scherer A, McCormick F and Wittinghofer A ( 1995 ) The 2.2 Å crystal structure of the Ras‐binding domain of the serine/threonine kinase c‐Raf1 in complex with Rap1A and a GTP analogue. Nature, 375, 554 – 560.en_US
dc.identifier.citedreferenceOhtsuka T, Shimizu K, Yamamori B, Kuroda S and Takai Y ( 1996 ) Activation of brain B‐Raf protein kinase by Rap1B small GTP‐binding protein. J Biol Chem, 271, 1258 – 1261.en_US
dc.identifier.citedreferencePayne DM, Rossomando AJ, Martino P, Erickson AK, Her JH, Shabanowitz J, Hunt DF, Weber MJ and Sturgill TW ( 1991 ) Identification of the regulatory phosphorylation sites in pp42/mitogen‐activated protein kinase (MAP kinase). EMBO J, 10, 885 – 892.en_US
dc.identifier.citedreferencePritchard CA, Bolin L, Slattery R, Murray R and McMahon M ( 1996 ) Post‐natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A‐Raf protein kinase gene. Curr Biol, 6, 614 – 617.en_US
dc.identifier.citedreferenceResing KA, Mansour SJ, Hermann AS, Johnson RS, Candia JM, Fukasawa K, Vande Woude GF and Ahn NG ( 1995 ) Determination of v‐Mos‐catalyzed phosphorylation sites and autophosphorylation sites on MAP kinase kinase by ESI/MS. Biochemistry, 34, 2610 – 2620.en_US
dc.identifier.citedreferenceReuter CW, Catling AD, Jelinek T and Weber MJ ( 1995 ) Biochemical analysis of MEK activation in NIH 3T3 fibroblasts. Identification of B‐Raf and other activators. J Biol Chem, 270, 7644 – 7655.en_US
dc.identifier.citedreferenceRommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD and Glass DJ ( 1999 ) Differentiation stage‐specific inhibition of the Raf‐MEK‐ERK pathway by Akt. Science, 286, 1738 – 1741.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.