Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney

Show simple item record Self, Michelle en_US Lagutin, Oleg V en_US Bowling, Beth en_US Hendrix, Jaime en_US Cai, Yi en_US Dressler, Gregory R en_US Oliver, Guillermo en_US 2014-01-08T20:34:29Z 2014-01-08T20:34:29Z 2006-11-01 en_US
dc.identifier.citation Self, Michelle; Lagutin, Oleg V; Bowling, Beth; Hendrix, Jaime; Cai, Yi; Dressler, Gregory R; Oliver, Guillermo (2006). "Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney." The EMBO Journal 25(21): 5214-5228. <> en_US
dc.identifier.issn 0261-4189 en_US
dc.identifier.issn 1460-2075 en_US
dc.publisher John Wiley & Sons, Ltd en_US
dc.subject.other Homeobox en_US
dc.subject.other Mouse en_US
dc.subject.other Nephrogenesis en_US
dc.subject.other Six2 en_US
dc.subject.other Kidney en_US
dc.title Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney en_US
dc.rights.robots IndexNoFollow en_US
dc.subject.hlbsecondlevel Molecular, Cellular and Developmental Biology en_US
dc.subject.hlbtoplevel Health Sciences en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.identifier.pmid 17036046 en_US
dc.identifier.doi 10.1038/sj.emboj.7601381 en_US
dc.identifier.source The EMBO Journal en_US
dc.identifier.citedreference Sanchez MP, Silos‐Santiago I, Frisen J, He B, Lira SA, Barbacid M ( 1996 ) Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382: 70 – 73 en_US
dc.identifier.citedreference Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL, Gruss P ( 1990 ) Pax8, a murine paired box gene expressed in the developing excretory system and thyroid gland. Development 110: 643 – 651 en_US
dc.identifier.citedreference Qian J, Jiang Z, Li M, Heaphy P, Liu YH, Shackleford GM ( 2003 ) Mouse Wnt9b transforming activity, tissue‐specific expression, and evolution. Genomics 81: 34 – 46 en_US
dc.identifier.citedreference Qiao J, Cohen D, Herzlinger D ( 1995 ) The metanephric blastema differentiates into collecting system and nephron epithelia in vitro. Development 121: 3207 – 3214 en_US
dc.identifier.citedreference Sariola H, Saarma M ( 1999 ) GDNF and its receptors in the regulation of the ureteric branching. Int J Dev Biol 43: 413 – 418 en_US
dc.identifier.citedreference Saxen L ( 1987 ) Organogenesis of the kidney. In Developmental and Cell Biology Series 19, Bard JBL, Barlow PW, Kirk DL (eds) Cambridge: Cambridge University Press en_US
dc.identifier.citedreference Saxen L, Sariola H ( 1987 ) Early organogenesis of the kidney. Pediatr Nephrol 1: 385 – 392 en_US
dc.identifier.citedreference Schaeren‐Wiemers N, Gerfin‐Moser A ( 1993 ) A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin‐labelled cRNA probes. Histochemistry 100: 431 – 440 en_US
dc.identifier.citedreference Schuchardt A, D'Agati V, Pachnis V, Costantini F ( 1996 ) Renal agenesis and hypodysplasia in ret‐k‐ mutant mice result from defects in ureteric bud development. Development 122: 1919 – 1929 en_US
dc.identifier.citedreference Shamley DR, Opperman LA, Buffenstein R, Ross FP ( 1992 ) Ontogeny of calbindin‐D28K and calbindin‐D9K in the mouse kidney, duodenum, cerebellum and placenta. Development 116: 491 – 496 en_US
dc.identifier.citedreference Shawlot W, Behringer RR ( 1995 ) Requirement for Lim1 in head‐organizer function. Nature 374: 425 – 430 en_US
dc.identifier.citedreference Stark K, Vainio S, Vassileva G, McMahon AP ( 1994 ) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt‐4. Nature 372: 679 – 683 en_US
dc.identifier.citedreference Torres M, Gomez‐Pardo E, Dressler GR, Gruss P ( 1995 ) Pax‐2 controls multiple steps of urogenital development. Development 121: 4057 – 4065 en_US
dc.identifier.citedreference Trupp M, Arenas E, Fainzilber M, Nilsson AS, Sieber BA, Grigoriou M, Kilkenny C, Salazar‐Grueso E, Pachnis V, Arumae U ( 1996 ) Functional receptor for GDNF encoded by the c‐ret proto‐oncogene. Nature 381: 785 – 789 en_US
dc.identifier.citedreference Tsang TE, Shawlot W, Kinder SJ, Kobayashi A, Kwan KM, Schughart K, Kania A, Jessell TM, Behringer RR, Tam PP ( 2000 ) Lim1 activity is required for intermediate mesoderm differentiation in the mouse embryo. Dev Biol 223: 77 – 90 en_US
dc.identifier.citedreference Vainio S, Lin Y ( 2002 ) Coordinating early kidney development: lessons from gene targeting. Nat Rev Genet 3: 533 – 543 en_US
dc.identifier.citedreference Vainio SJ, Uusitalo MS ( 2000 ) A road to kidney tubules via the Wnt pathway. Pediatr Nephrol 15: 151 – 156 en_US
dc.identifier.citedreference Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR ( 1996 ) Glial cell line‐derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93: 10657 – 10661 en_US
dc.identifier.citedreference Vize PD, Woolf AS, Bard JBL ( 2003 ) The Kidney, from Normal Development to Congenital Disease. London: Academic Press en_US
dc.identifier.citedreference Wilkinson DG ( 1995 ) RNA detection using non‐radioactive in situ hybridization. Curr Opin Biotechnol 6: 20 – 23 en_US
dc.identifier.citedreference Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R ( 1999 ) Eya1‐deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23: 113 – 117 en_US
dc.identifier.citedreference Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D ( 2003 ) Six1 is required for the early organogenesis of mammalian kidney. Development 130: 3085 – 3094 en_US
dc.identifier.citedreference Yoshino K, Rubin JS, Higinbotham KG, Uren A, Anest V, Plisov SY, Perantoni AO ( 2001 ) Secreted Frizzled‐related proteins can regulate metanephric development. Mech Dev 102: 45 – 55 en_US
dc.identifier.citedreference Yu J, McMahon AP, Valerius MT ( 2004 ) Recent genetic studies of mouse kidney development. Curr Opin Genet Dev 14: 550 – 557 en_US
dc.identifier.citedreference Armstrong JF, Pritchard‐Jones K, Bickmore WA, Hastie ND, Bard JB ( 1993 ) The expression of the Wilms' tumour gene, WT1, in the developing mammalian embryo. Mech Dev 40: 85 – 97 en_US
dc.identifier.citedreference Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M ( 2002 ) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16: 2958 – 2970 en_US
dc.identifier.citedreference Buckler AJ, Pelletier J, Haber DA, Glaser T, Housman DE ( 1991 ) Isolation, characterization, and expression of the murine Wilms' tumor gene (WT1) during kidney development. Mol Cell Biol 11: 1707 – 1712 en_US
dc.identifier.citedreference Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP ( 2005 ) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9: 283 – 292 en_US
dc.identifier.citedreference Cho EA, Patterson LT, Brookhiser WT, Mah S, Kintner C, Dressler GR ( 1998 ) Differential expression and function of cadherin‐6 during renal epithelium development. Development 125: 803 – 812 en_US
dc.identifier.citedreference Collins JF, Ghishan FK ( 1994 ) Molecular cloning, functional expression, tissue distribution, and in situ hybridization of the renal sodium phosphate (Na+/P(i)) transporter in the control and hypophosphatemic mouse. FASEB J 8: 862 – 868 en_US
dc.identifier.citedreference Crossley PH, Martin GR ( 1995 ) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121: 439 – 451 en_US
dc.identifier.citedreference Donovan MJ, Natoli TA, Sainio K, Amstutz A, Jaenisch R, Sariola H, Kreidberg JA ( 1999 ) Initial differentiation of the metanephric mesenchyme is independent of WT1 and the ureteric bud. Dev Genet 24: 252 – 262 en_US
dc.identifier.citedreference Dressler GR ( 2002 ) Development of the excretory system. In Mouse Development: Patterning, Morphogenesis, and Organogenesis, Rossant J, Tam PPL (eds) pp 395 – 420. San Diego, CA: Academic Press en_US
dc.identifier.citedreference Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P ( 1990 ) Pax2, a new murine paired‐box‐containing gene and its expression in the developing excretory system. Development 109: 787 – 795 en_US
dc.identifier.citedreference Dressler GR, Douglass EC ( 1992 ) Pax‐2 is a DNA‐binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci USA 89: 1179 – 1183 en_US
dc.identifier.citedreference Dudley AT, Lyons KM, Robertson EJ ( 1995 ) A requirement for bone morphogenetic protein‐7 during development of the mammalian kidney and eye. Genes Dev 9: 2795 – 2807 en_US
dc.identifier.citedreference Dudley AT, Robertson EJ ( 1997 ) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208: 349 – 362 en_US
dc.identifier.citedreference Durbec P, Marcos‐Gutierrez CV, Kilkenny C, Grigoriou M, Wartiowaara K, Suvanto P, Smith D, Ponder B, Costantini F, Saarma M, Sariola H, Pachnis V ( 1996 ) GDNF signalling through the Ret receptor tyrosine kinase. Nature 381: 789 – 793 en_US
dc.identifier.citedreference Ekblom P, Alitalo K, Vaheri A, Timpl R, Saxen L ( 1980 ) Induction of a basement membrane glycoprotein in embryonic kidney: possible role of laminin in morphogenesis. Proc Natl Acad Sci USA 77: 485 – 489 en_US
dc.identifier.citedreference Ekblom P, Klein G, Ekblom M, Sorokin L ( 1991 ) Laminin isoforms and their receptors in the developing kidney. Am J Kidney Dis 17: 603 – 605 en_US
dc.identifier.citedreference Favor J, Sandulache R, Neuhauser‐Klaus A, Pretsch W, Chatterjee B, Senft E, Wurst W, Blanquet V, Grimes P, Sporle R, Schughart K ( 1996 ) The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal‐coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc Natl Acad Sci USA 93: 13870 – 13875 en_US
dc.identifier.citedreference Fleming S, Symes CE ( 1987 ) The distribution of cytokeratin antigens in the kidney and in renal tumours. Histopathology 11: 157 – 170 en_US
dc.identifier.citedreference Fujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H ( 1994 ) Expression patterns of the murine LIM class homeobox gene lim1 in the developing brain and excretory system. Dev Dyn 199: 73 – 83 en_US
dc.identifier.citedreference Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC ( 1994 ) Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium–(potassium)–chloride cotransporter family expressed in kidney. J Biol Chem 269: 17713 – 17722 en_US
dc.identifier.citedreference Gao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA ( 2005 ) Angioblast‐mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development 132: 5437 – 5449 en_US
dc.identifier.citedreference Grieshammer U, Cebrian C, Ilagan R, Meyers E, Herzlinger D, Martin GR ( 2005 ) FGF8 is required for cell survival at distinct stages of nephrogenesis and for regulation of gene expression in nascent nephrons. Development 132: 3847 – 3857 en_US
dc.identifier.citedreference Grobstein C ( 1955 ) Inductive interactions in the development of the mouse metanephros. J Exp Zool 130: 319 – 340 en_US
dc.identifier.citedreference Gruenwald P ( 1943 ) Stimulations of nephrogenic tissues by normal and abnormal inductors. Anat Rec 86: 321 – 335 en_US
dc.identifier.citedreference Hatini V, Huh SO, Herzlinger D, Soares VC, Lai E ( 1996 ) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF‐2. Genes Dev 10: 1467 – 1478 en_US
dc.identifier.citedreference Hebert SC, Mount DB, Gamba G ( 2004 ) Molecular physiology of cation‐coupled Cl − cotransport: the SLC12 family. Pflugers Arch 447: 580 – 593 en_US
dc.identifier.citedreference Hellmich HL, Kos L, Cho ES, Mahon KA, Zimmer A ( 1996 ) Embryonic expression of glial cell‐line derived neurotrophic factor (GDNF) suggests multiple developmental roles in neural differentiation and epithelial–mesenchymal interactions. Mech Dev 54: 95 – 105 en_US
dc.identifier.citedreference Herzlinger D, Koseki C, Mikawa T, al‐Awqati Q ( 1992 ) Metanephric mesenchyme contains multipotent stem cells whose fate is restricted after induction. Development 114: 565 – 572 en_US
dc.identifier.citedreference Kalatzis V, Sahly I, El‐Amraoui A, Petit C ( 1998 ) Eya1 expression in the developing ear and kidney: towards the understanding of the pathogenesis of Branchio‐Oto‐Renal (BOR) syndrome. Dev Dyn 213: 486 – 499 en_US
dc.identifier.citedreference Kispert A, Vainio S, McMahon AP ( 1998 ) Wnt‐4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125: 4225 – 4234 en_US
dc.identifier.citedreference Kispert A, Vainio S, Shen L, Rowitch DH, McMahon AP ( 1996 ) Proteoglycans are required for maintenance of Wnt‐11 expression in the ureter tips. Development 122: 3627 – 3637 en_US
dc.identifier.citedreference Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R ( 1993 ) WT‐1 is required for early kidney development. Cell 74: 679 – 691 en_US
dc.identifier.citedreference Laclef C, Souil E, Demignon J, Maire P ( 2003 ) Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice. Mech Dev 120: 669 – 679 en_US
dc.identifier.citedreference Leimeister C, Bach A, Gessler M ( 1998 ) Developmental expression patterns of mouse sFRP genes encoding members of the secreted frizzled related protein family. Mech Dev 75: 29 – 42 en_US
dc.identifier.citedreference Lescher B, Haenig B, Kispert A ( 1998 ) sFRP‐2 is a target of the Wnt‐4 signaling pathway in the developing metanephric kidney. Dev Dyn 213: 440 – 451 en_US
dc.identifier.citedreference Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG ( 2003 ) Eya protein phosphatase activity regulates Six1–Dach–Eya transcriptional effects in mammalian organogenesis. Nature 426: 247 – 254 en_US
dc.identifier.citedreference Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G ( 1995 ) BMP‐7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9: 2808 – 2820 en_US
dc.identifier.citedreference Lyons KM, Hogan BL, Robertson EJ ( 1995 ) Colocalization of BMP 7 and BMP 2 RNAs suggests that these factors cooperatively mediate tissue interactions during murine development. Mech Dev 50: 71 – 83 en_US
dc.identifier.citedreference Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP ( 2003 ) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130: 3175 – 3185 en_US
dc.identifier.citedreference Mansouri A, Chowdhury K, Gruss P ( 1998 ) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19: 87 – 90 en_US
dc.identifier.citedreference Miner JH, Li C ( 2000 ) Defective glomerulogenesis in the absence of laminin alpha5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217: 278 – 289 en_US
dc.identifier.citedreference Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A ( 1999 ) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126: 1845 – 1857 en_US
dc.identifier.citedreference Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, Phillips H, Reichardt LF, Ryan AM, Carver‐Moore K, Rosenthal A ( 1996 ) Renal and neuronal abnormalities in mice lacking GDNF. Nature 382: 76 – 79 en_US
dc.identifier.citedreference Murer H, Forster I, Biber J ( 2004 ) The sodium phosphate cotransporter family SLC34. Pflugers Arch 447: 763 – 767 en_US
dc.identifier.citedreference Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T ( 2001 ) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128: 3105 – 3115 en_US
dc.identifier.citedreference Nishinakamura R, Osafune K ( 2006 ) Essential roles of sall family genes in kidney development. J Physiol Sci 56: 131 – 136 en_US
dc.identifier.citedreference Nishinakamura R, Takasato M ( 2005 ) Essential roles of Sall1 in kidney development. Kidney Int 68: 1948 – 1950 en_US
dc.identifier.citedreference Oliver G, Wehr R, Jenkins NA, Copeland NG, Cheyette BN, Hartenstein V, Zipursky SL, Gruss P ( 1995 ) Homeobox genes and connective tissue patterning. Development 121: 693 – 705 en_US
dc.identifier.citedreference Pachnis V, Mankoo B, Costantini F ( 1993 ) Expression of the c‐ret proto‐oncogene during mouse embryogenesis. Development 119: 1005 – 1017 en_US
dc.identifier.citedreference Perantoni AO, Timofeeva O, Naillat F, Richman C, Pajni‐Underwood S, Wilson C, Vainio S, Dove LF, Lewandoski M ( 2005 ) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132: 3859 – 3871 en_US
dc.identifier.citedreference Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, Grinberg A, Lee EJ, Huang SP, Saarma M, Hoffer BJ, Sariola H, Westphal H ( 1996 ) Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 382: 73 – 76 en_US
dc.owningcollname Interdisciplinary and Peer-Reviewed
 Show simple item record

This item appears in the following Collection(s)

Search Deep Blue

Advanced Search

Browse by

My Account


Coming Soon

MLibrary logo