Show simple item record

Assessing the barriers to image‐guided drug delivery

dc.contributor.authorLanza, Gregory M.en_US
dc.contributor.authorMoonen, Chriten_US
dc.contributor.authorBaker, James R.en_US
dc.contributor.authorChang, Estheren_US
dc.contributor.authorCheng, Zhengen_US
dc.contributor.authorGrodzinski, Piotren_US
dc.contributor.authorFerrara, Katherineen_US
dc.contributor.authorHynynen, Kullervoen_US
dc.contributor.authorKelloff, Garyen_US
dc.contributor.authorLee, Yong‐eun Kooen_US
dc.contributor.authorPatri, Anil K.en_US
dc.contributor.authorSept, Daviden_US
dc.contributor.authorSchnitzer, Jan E.en_US
dc.contributor.authorWood, Bradford J.en_US
dc.contributor.authorZhang, Miqinen_US
dc.contributor.authorZheng, Gangen_US
dc.contributor.authorFarahani, Keyvanen_US
dc.date.accessioned2014-01-08T20:34:29Z
dc.date.available2015-03-02T14:35:34Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationLanza, Gregory M.; Moonen, Chrit; Baker, James R.; Chang, Esther; Cheng, Zheng; Grodzinski, Piotr; Ferrara, Katherine; Hynynen, Kullervo; Kelloff, Gary; Lee, Yong‐eun Koo ; Patri, Anil K.; Sept, David; Schnitzer, Jan E.; Wood, Bradford J.; Zhang, Miqin; Zheng, Gang; Farahani, Keyvan (2014). "Assessing the barriers to imageâ guided drug delivery." Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 6(1): 1-14.en_US
dc.identifier.issn1939-5116en_US
dc.identifier.issn1939-0041en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102084
dc.publisherJohn Wiley & Sons, Inc.en_US
dc.titleAssessing the barriers to image‐guided drug deliveryen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102084/1/wnan1247.pdf
dc.identifier.doi10.1002/wnan.1247en_US
dc.identifier.sourceWiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnologyen_US
dc.identifier.citedreferenceSchnitzer JE. gp60 is an albumin‐binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol 1992, 262: H246 – H254.en_US
dc.identifier.citedreferenceChrastina A, Massey KA, Schnitzer JE. Overcoming in vivo barriers to targeted nanodelivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2011, 3: 421 – 437.en_US
dc.identifier.citedreferencePapademetriou J, Garnacho C, Serrano D, Bhowmick T, Schuchman EH, Muro S. Comparative binding, endocytosis, and biodistribution of antibodies and antibody‐coated carriers for targeted delivery of lysosomal enzymes to ICAM‐1 versus transferrin receptor. J Inherit Metab Dis 2013, 36: 467 – 477.en_US
dc.identifier.citedreferenceMane V, Muro S. Biodistribution and endocytosis of ICAM‐1‐targeting antibodies versus nanocarriers in the gastrointestinal tract in mice. Int J Nanomedicine 2012, 7: 4223 – 4237.en_US
dc.identifier.citedreferenceGhaffarian R, Bhowmick T, Muro S. Transport of nanocarriers across gastrointestinal epithelial cells by a new transcellular route induced by targeting ICAM‐1. J Control Release 2012, 163: 25 – 33.en_US
dc.identifier.citedreferenceBhowmick T, Berk E, Cui X, Muzykantov VR, Muro S. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM‐1. J Control Release 2012, 157: 485 – 492.en_US
dc.identifier.citedreferenceMuro S, Gajewski C, Koval M, Muzykantov VR. ICAM‐1 recycling in endothelial cells: a novel pathway for sustained intracellular delivery and prolonged effects of drugs. Blood 2005, 105: 650 – 658.en_US
dc.identifier.citedreferenceRamsay AG, Evans R, Kiaii S, Svensson L, Hogg N, Gribben JG. Chronic lymphocytic leukemia cells induce defective LFA‐1‐directed T‐cell motility by altering Rho GTPase signaling that is reversible with lenalidomide. Blood 2013, 121: 2704 – 2714.en_US
dc.identifier.citedreferenceGupta A, Le A, Belinka BA, Kachlany SC. In vitro synergism between LFA‐1 targeting leukotoxin (Leukothera) and standard chemotherapeutic agents in leukemia cells. Leuk Res 2011, 35: 1498 – 1505.en_US
dc.identifier.citedreferenceKachlany SC, Schwartz AB, Balashova NV, Hioe CE, Tuen M, Le A, Kaur M, Mei Y, Rao J. Anti‐leukemia activity of a bacterial toxin with natural specificity for LFA‐1 on white blood cells. Leuk Res 2010, 34: 777 – 785.en_US
dc.identifier.citedreferenceWoessner S, Asensio A, Florensa L, Pedro C, Besses C, Sans‐Sabrafen J. Expression of lymphocyte function‐associated antigen (LFA)‐1 in B‐cell chronic lymphocytic leukemia. Leuk Lymphoma 1994, 13: 457 – 461.en_US
dc.identifier.citedreferenceSugahara KN, Teesalu T, Karmali PP, Kotamraju VR, Agemy L, Greenwald DR, Ruoslahti E. Coadministration of a tumor‐penetrating peptide enhances the efficacy of cancer drugs. Science 2010, 328: 1031 – 1035.en_US
dc.identifier.citedreferenceHamzah J, Kotamraju VR, Seo JW, Agemy L, Fogal V, Mahakian LM, Peters D, Roth L, Gagnon MKJ, Ferrara KW, et al. Specific penetration and accumulation of a homing peptide within atherosclerotic plaques of apolipoprotein E‐deficient mice. Proc Natl Acad Sci U S A 2011, 108: 7154 – 7159.en_US
dc.identifier.citedreferenceHaspel N, Zanuy D, Nussinov R, Teesalu T, Ruoslahti E, Aleman C. Binding of a C‐end rule peptide to the neuropilin‐1 receptor: a molecular modeling approach. Biochemistry 2011, 50: 1755 – 1762.en_US
dc.identifier.citedreferenceRoth L, Agemy L, Kotamraju VR, Braun G, Teesalu T, Sugahara KN, Hamzah J, Ruoslahti E. Transtumoral targeting enabled by a novel neuropilin‐binding peptide. Oncogene 2012, 31: 3754 – 3763.en_US
dc.identifier.citedreferenceSun SW, Zu XY, Tuo QH, Chen LX, Lei XY, Li K, Tang CK, Liao DF. Caveolae and caveolin‐1 mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial cells. Acta Pharmacol Sin 2010, 31: 1336 – 1342.en_US
dc.identifier.citedreferenceCavelier C, Ohnsorg PM, Rohrer L, Von Eckardstein A. The Î 2 ‐chain of cell surface F0F1 ATPase modulates ApoA‐I and HDL transcytosis through aortic endothelial cells. Arterioscler Thromb Vasc Biol 2012, 32: 131 – 139.en_US
dc.identifier.citedreferenceZhou HF, Hu G, Wickline SA, Lanza GM, Pham CT. Synergistic effect of antiangiogenic nanotherapy combined with methotrexate in the treatment of experimental inflammatory arthritis. Nanomedicine (Lond) 2010, 5: 1065 – 1074.en_US
dc.identifier.citedreferenceZhou HF, Yan H, Senpan A, Wickline SA, Pan D, Lanza GM, Pham CT. Suppression of inflammation in a mouse model of rheumatoid arthritis using targeted lipase‐labile fumagillin prodrug nanoparticles. Biomaterials 2012, 33: 8632 – 8640.en_US
dc.identifier.citedreferenceLiu D, Mori A, Huang L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1‐containing liposomes. Biochim Biophys Acta 1992, 1104: 95 – 101.en_US
dc.identifier.citedreferenceHe Q, Zhang Z, Gao F, Li Y, Shi J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. Small 2011, 7: 271 – 280.en_US
dc.identifier.citedreferenceSchipper ML, Iyer G, Koh AL, Cheng Z, Ebenstein Y, Aharoni A, Keren S, Bentolila LA, Li J, Rao J, et al. Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009, 5: 126 – 134.en_US
dc.identifier.citedreferenceArmstrong J, Hempel G, Koling S, Chan L, Fisher T, Meiselman H, Garratty G. Antibody against poly(ethylene glycol) adversely affects PEG‐asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 2007, 110: 103 – 111.en_US
dc.identifier.citedreferenceSemete B, Booysen LI, Kalombo L, Venter JD, Katata L, Ramalapa B, Verschoor JA, Swai H. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 2010, 249: 158 – 165.en_US
dc.identifier.citedreferenceJang JY, Lee DY, Park SJ, Byun Y. Immune reactions of lymphocytes and macrophages against PEG‐grafted pancreatic islets. Biomaterials 2004, 25: 3663 – 3669.en_US
dc.identifier.citedreferenceRojas‐Espinosa O, Oltra A, Arce P. Circulating immune complexes in patients with advanced pulmonary tuberculosis detected by a polyethylene glycol precipitation‐complement consuming test (PEG‐CC test). Rev Latinoam Microbiol 1988, 30: 25 – 29.en_US
dc.identifier.citedreferencePham CT, Mitchell LM, Huang JL, Lubniewski CM, Schall OF, Killgore JK, Pan D, Wickline SA, Lanza GM, Hourcade DE. Variable antibody‐dependent activation of complement by functionalized phospholipid nanoparticle surfaces. J Biol Chem 2011, 286: 123 – 130.en_US
dc.identifier.citedreferenceAggeli C, Giannopoulos G, Lampropoulos K, Pitsavos C, Stefanadis C. Adverse bioeffects of ultrasound contrast agents used in echocardiography: true safety issue or “much ado about nothing”? Curr Vasc Pharmacol 2009, 7: 338 – 346.en_US
dc.identifier.citedreferenceBawa R. Regulating nanomedicine—can the FDA handle it? Curr Drug Deliv 2011, 8: 227 – 234.en_US
dc.identifier.citedreferenceBawa R. FDA and nanotech: baby steps lead to regulatory uncertainty. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F, eds. Bio‐Nanotechnology: A Revolution in Food, Biomedical and Health Sciences. Oxford: Blackwell Publishing Ltd; 2013, 720 – 732.en_US
dc.identifier.citedreferenceStrebhard K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. Nat Rev Cancer 2008, 8: 473 – 480.en_US
dc.identifier.citedreferenceBos C, Lepetit‐Coiffé M, Quesson B, Moonen C. Simultaneous monitoring of temperature and T1: methods and preliminary results of application to drug delivery using thermosensitive liposomes. Magn Reson Med 2005, 54: 1020 – 1024.en_US
dc.identifier.citedreferenceDromi S, Frenkel V, Luk A, Traughber B, Angstadt M, Bur M, Poff J, Xie J, Libutti S, Li K, et al. Pulsed‐high intensity focused ultrasound and low temperature‐sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res 2007, 13: 2722 – 2727.en_US
dc.identifier.citedreferenceCastle J, Butts M, Healey A, Kent K, Marino M, Feinstein SB. Ultrasound‐mediated targeted drug delivery: recent success and remaining challenges. Am J Physiol Heart Circ Physiol 2013, 304: H350 – H357.en_US
dc.identifier.citedreferenceDeckers R, Rome C, Moonen C. The role of ultrasound and magnetic resonance in local drug delivery. J Magn Reson Imaging 2008, 27: 400 – 409.en_US
dc.identifier.citedreferenceZhao YZ, Du LN, Lu CT, Jin YG, Ge SP. Potential and problems in ultrasound‐responsive drug delivery systems. Int J Nanomedicine 2013, 8: 1621 – 1633.en_US
dc.identifier.citedreferenceWang S, Zderic V, Frenkel V. Extracorporeal, low‐energy focused ultrasound for noninvasive and nondestructive targeted hyperthermia. Future Oncol 2010, 6: 1497 – 1511.en_US
dc.identifier.citedreferenceMoroz P, Jones S, Winter J, Gray B. Targeting liver tumors with hyperthermia: ferromagnetic embolization in a rabbit liver tumor model. J Surg Oncol 2001, 78: 22 – 29.en_US
dc.identifier.citedreferenceNikawa Y, Okada F. Deep and localized heating for hyperthermia using ferrimagnetic resonance. In: Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society ( Cat No. 87ch2513‐0), Boston, MA, 1987.en_US
dc.identifier.citedreferenceSalomir R, Palussière J, Fossheim S, Rogstad A, Wiggen U, Grenier N, Moonen C. Local delivery of magnetic resonance (MR) contrast agent in kidney using thermosensitive liposomes and MR imaging‐guided local hyperthermia: a feasibility study in vivo. J Magn Reson Imaging 2005, 22: 534 – 540.en_US
dc.identifier.citedreferenceFreddi S, Sironi L, D'Antuono R, Morone D, Dona A, Cabrini E, D'Alfonso L, Collini M, Pallavicini P, Baldi G, et al. A molecular thermometer for nanoparticles for optical hyperthermia. Nano Lett 2013, 13: 2004 – 2010.en_US
dc.identifier.citedreferencePatel RH, Wadajkar AS, Patel NL, Kavuri VC, Nguyen KT, Liu H. Multifunctionality of indocyanine green‐loaded biodegradable nanoparticles for enhanced optical imaging and hyperthermia intervention of cancer. J Biomed Opt 2012, 17: 046003.en_US
dc.identifier.citedreferenceKuo WS, Chang CN, Chang YT, Yang MH, Chien YH, Chen SJ, Yeh CS. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near‐infrared optical imaging. Angew Chem Int Ed Engl 2010, 49: 2711 – 2715.en_US
dc.identifier.citedreferenceHu KW, Liu TM, Chung KY, Huang KS, Hsieh CT, Sun CK, Yeh CS. Efficient near‐IR hyperthermia and intense nonlinear optical imaging contrast on the gold nanorod‐in‐shell nanostructures. J Am Chem Soc 2009, 131: 14186 – 14187.en_US
dc.identifier.citedreferenceSvaasand LO, Boerslid T, Oeveraasen M. Thermal and optical properties of living tissue: application to laser‐induced hyperthermia. Lasers Surg Med 1985, 5: 589 – 602.en_US
dc.identifier.citedreferenceVaguine VA, Christensen DA, Lindley JH, Walston TE. Multiple sensor optical thermometry system for application in clinical hyperthermia. IEEE Trans Biomed Eng 1984, 31: 168 – 172.en_US
dc.identifier.citedreferenceSantra S, Kaittanis C, Santiesteban OJ, Perez JM. Cell‐specific, activatable, and theranostic prodrug for dual‐targeted cancer imaging and therapy. J Am Chem Soc 2011, 133: 16680 – 16688.en_US
dc.identifier.citedreferenceWadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT. Design and application of magnetic‐based theranostic nanoparticle systems. Recent Pat Biomed Eng 2013, 6: 47 – 57.en_US
dc.identifier.citedreferenceRai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T. Development and applications of photo‐triggered theranostic agents. Adv Drug Deliv Rev 2010, 62: 1094 – 1124.en_US
dc.identifier.citedreferenceTan A, Rajadas J, Seifalian AM. Exosomes as nano‐theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev 2013, 65: 357 – 367.en_US
dc.identifier.citedreferenceAlberti C. From molecular imaging in preclinical/clinical oncology to theranostic applications in targeted tumor therapy. Eur Rev Med Pharmacol Sci 2012, 16: 1925 – 1933.en_US
dc.identifier.citedreferenceMcCarthy JR. The future of theranostic nanoagents. Nanomedicine (Lond) 2009, 4: 693 – 695.en_US
dc.identifier.citedreferenceXia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK. Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 2011, 44: 914 – 924.en_US
dc.identifier.citedreferenceHeo DN, Yang DH, Moon HJ, Lee JB, Bae MS, Lee SC, Lee WJ, Sun IC, Kwon IK. Gold nanoparticles surface‐functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 2012, 33: 856 – 866.en_US
dc.identifier.citedreferenceShrestha R, Elsabahy M, Luehmann H, Samarajeewa S, Florez‐Malaver S, Lee NS, Welch MJ, Liu Y, Wooley KL. Hierarchically assembled theranostic nanostructures for siRNA delivery and imaging applications. J Am Chem Soc 2012, 134: 17362 – 17365.en_US
dc.identifier.citedreferenceJanib SM, Moses AS, MacKay JA. Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliv Rev 2010, 62: 1052 – 1063.en_US
dc.identifier.citedreferenceWagner DS, Delk NA, Lukianova‐Hleb EY, Hafner JH, Farach‐Carson MC, Lapotko DO. The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. Biomaterials 2010, 31: 7567 – 7574.en_US
dc.identifier.citedreferencePan D, Caruthers SD, Hu G, Senpan A, Scott MJ, Gaffney PJ, Wickline SA, Lanza GM. Ligand‐directed nanobialys as theranostic agent for drug delivery and manganese‐based magnetic resonance imaging of vascular targets. J Am Chem Soc 2008, 130: 9186 – 9187.en_US
dc.identifier.citedreferenceKim JI, Lee BS, Chun C, Cho JK, Kim SY, Song SC. Long‐term theranostic hydrogel system for solid tumors. Biomaterials 2012, 33: 2251 – 2259.en_US
dc.identifier.citedreferenceAmbrogio MW, Thomas CR, Zhao YL, Zink JI, Stoddart JF. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 2011, 44: 903 – 913.en_US
dc.identifier.citedreferenceZhang Y, Lovell JF. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2012, 2: 905 – 915.en_US
dc.identifier.citedreferenceZhang H, Tian M, Ignasi C, Cheng Z, Shen LH, Yang DJ. Molecular image‐guided theranostic and personalized medicine. J Biomed Biotechnol 2011, 2011: 673697.en_US
dc.identifier.citedreferenceXie J, Lee S, Chen X. Nanoparticle‐based theranostic agents. Adv Drug Deliv Rev 2010, 62: 1064 – 1079.en_US
dc.identifier.citedreferenceHilvo M, Denkert C, Lehtinen L, Muller B, Brockmoller S, Seppanen‐Laakso T, Budczies J, Bucher E, Yetukuri L, Castillo S, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res 2011, 71: 3236 – 3245.en_US
dc.identifier.citedreferencePuri A, Blumenthal R. Polymeric lipid assemblies as novel theranostic tools. Acc Chem Res 2011, 44: 1071 – 1079.en_US
dc.identifier.citedreferenceZhang Z, Wang L, Wang J, Jiang X, Li X, Hu Z, Ji Y, Wu X, Chen C. Mesoporous silica‐coated gold nanorods as a light‐mediated multifunctional theranostic platform for cancer treatment. Adv Mater 2012, 24: 1418 – 1423.en_US
dc.identifier.citedreferenceGu Z, Yan L, Tian G, Li S, Chai Z, Zhao Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater 2013, 25: 3758 – 3779.en_US
dc.identifier.citedreferenceRizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol In press.en_US
dc.identifier.citedreferenceCaldorera‐Moore ME, Liechty WB, Peppas NA. Responsive theranostic systems: integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc Chem Res 2011, 44: 1061 – 1070.en_US
dc.identifier.citedreferenceBulte JW. Science to practice: can theranostic fullerenes be used to treat brain tumors? Radiology 2011, 261: 1 – 2.en_US
dc.identifier.citedreferenceWan Q, Xie L, Gao L, Wang Z, Nan X, Lei H, Long X, Chen ZY, He CY, Liu G, et al. Self‐assembled magnetic theranostic nanoparticles for highly sensitive MRI of minicircle DNA delivery. Nanoscale 2013, 5: 744 – 752.en_US
dc.identifier.citedreferenceBhojani MS, Van Dort M, Rehemtulla A, Ross BD. Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol Pharm 2010, 7: 1921 – 1929.en_US
dc.identifier.citedreferenceMacKay JA, Li Z. Theranostic agents that co‐deliver therapeutic and imaging agents? Adv Drug Deliv Rev 2010, 62: 1003 – 1004.en_US
dc.identifier.citedreferenceFernandez‐Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image‐guided therapy, and multifunctional platforms. Appl Biochem Biotechnol 2011, 165: 1628 – 1651.en_US
dc.identifier.citedreferenceAhmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discov Today 2012, 17: 928 – 934.en_US
dc.identifier.citedreferenceBorden M, Rege K. Theranostic biocolloids: soft matter colloids for imaging and therapy. Theranostics 2012, 2: 1115 – 1116.en_US
dc.identifier.citedreferenceWiessler M, Hennrich U, Pipkorn R, Waldeck W, Cao L, Peter J, Ehemann V, Semmler W, Lammers T, Braun K. Theranostic cRGD‐BioShuttle constructs containing temozolomide‐ and Cy7 for NIR‐imaging and therapy. Theranostics 2011, 1: 381 – 394.en_US
dc.identifier.citedreferenceFeshitan JA, Vlachos F, Sirsi SR, Konofagou EE, Borden MA. Theranostic Gd(III)‐lipid microbubbles for MRI‐guided focused ultrasound surgery. Biomaterials 2012, 33: 247 – 255.en_US
dc.identifier.citedreferencePenet MF, Chen Z, Kakkad S, Pomper MG, Bhujwalla ZM. Theranostic imaging of cancer. Eur J Radiol 2012, 81 ( suppl 1 ): S124 – S126.en_US
dc.identifier.citedreferenceMuthu MS, Feng SS. Theranostic liposomes for cancer diagnosis and treatment: current development and pre‐clinical success. Expert Opin Drug Deliv 2013, 10: 151 – 155.en_US
dc.identifier.citedreferenceYoo D, Lee JH, Shin TH, Cheon J. Theranostic magnetic nanoparticles. Acc Chem Res 2011, 44: 863 – 874.en_US
dc.identifier.citedreferenceSumer B, Gao J. Theranostic nanomedicine for cancer. Nanomedicine (Lond) 2008, 3: 137 – 140.en_US
dc.identifier.citedreferencePan D. Theranostic nanomedicine with functional nanoarchitecture. Mol Pharm 2013, 10: 781 – 782.en_US
dc.identifier.citedreferenceMa X, Zhao Y, Liang XJ. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc Chem Res 2011, 44: 1114 – 1122.en_US
dc.identifier.citedreferenceLee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano 2013, 7: 2078 – 2089.en_US
dc.identifier.citedreferenceChoi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale 2012, 4: 330 – 342.en_US
dc.identifier.citedreferenceBardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer. Acc Chem Res 2011, 44: 936 – 946.en_US
dc.identifier.citedreferenceArbustini E, Gambarin FI. Theranostic strategy against plaque angiogenesis. JACC Cardiovasc Imaging 2008, 1: 635 – 637.en_US
dc.identifier.citedreferenceSchmieder AH, Caruthers SD, Zhang H, Williams TA, Robertson JD, Wickline SA, Lanza GM. Three‐dimensional MR mapping of angiogenesis with α5β1(α nu β3)‐targeted theranostic nanoparticles in the MDA‐MB‐435 xenograft mouse model. FASEB J 2008, 22: 4179 – 4189.en_US
dc.identifier.citedreferenceShi J, Liu TW, Chen J, Green D, Jaffray D, Wilson BC, Wang F, Zheng G. Transforming a targeted porphyrin theranostic agent into a PET imaging probe for cancer. Theranostics 2011, 1: 363 – 370.en_US
dc.identifier.citedreferenceAnderson CJ, Bulte JWM, Chen K, Chen X, Khaw BA, Shokeen M, Wooley KL, VanBrocklin HF. Design of targeted cardiovascular molecular imaging probes. J Nucl Med 2010, 51: 3S – 17S.en_US
dc.identifier.citedreferenceBinsalamah ZM, Paul A, Prakash S, Shum‐Tim D. Nanomedicine in cardiovascular therapy: recent advancements. Expert Rev Cardiovasc Ther 2012, 10: 805 – 815.en_US
dc.identifier.citedreferenceChacko AM, Hood ED, Zern BJ, Muzykantov VR. Targeted nanocarriers for imaging and therapy of vascular inflammation. Curr Opin Colloid Interface Sci 2011, 16: 215 – 227.en_US
dc.identifier.citedreferenceDe Oliveira H, Thevenot J, Lecommandoux S. Smart polymersomes for therapy and diagnosis: fast progress toward multifunctional biomimetic nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012, 4: 525 – 546.en_US
dc.identifier.citedreferenceGrimm J, Scheinberg DA. Will nanotechnology influence targeted cancer therapy? Semin Radiat Oncol 2011, 21: 80 – 87.en_US
dc.identifier.citedreferenceKluza E, Strijkers GJ, Nicolay K. Multifunctional magnetic resonance imaging probes. Recent Results Cancer Res 2013, 187: 151 – 190.en_US
dc.identifier.citedreferenceLanza GM, Winter PM, Caruthers SD, Hughes MS, Hu G, Schmieder AH, Wickline SA. Theragnostics for tumor and plaque angiogenesis with perfluorocarbon nanoemulsions. Angiogenesis 2010, 13: 189 – 202.en_US
dc.identifier.citedreferenceMcCarthy JR, Bhaumik J, Karver MR, Sibel Erdem S, Weissleder R. Targeted nanoagents for the detection of cancers. Mol Oncol 2010, 4: 511 – 528.en_US
dc.identifier.citedreferenceNair SB, Dileep A, Rajanikant GK. Nanotechnology based diagnostic and therapeutic strategies for neuroscience with special emphasis on ischemic stroke. Curr Med Chem 2012, 19: 744 – 756.en_US
dc.identifier.citedreferenceO'Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Non‐invasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 2013, 169: 719 – 735.en_US
dc.identifier.citedreferencePower S, Slattery MM, Lee MJ. Nanotechnology and its relationship to interventional radiology. Part II: drug delivery, thermotherapy, and vascular intervention. Cardiovasc Intervent Radiol 2011, 34: 676 – 690.en_US
dc.identifier.citedreferenceShin SJ, Beech JR, Kelly KA. Targeted nanoparticles in imaging: paving the way for personalized medicine in the battle against cancer. Integr Biol (Camb) 2013, 5: 29 – 42.en_US
dc.identifier.citedreferenceSilindir M, Erdogan S, Özer AY, Maia S. Liposomes and their applications in molecular imaging. J Drug Target 2012, 20: 401 – 415.en_US
dc.identifier.citedreferenceSmith BA, Smith BD. Biomarkers and molecular probes for cell death imaging and targeted therapeutics. Bioconjug Chem 2012, 23: 1989 – 2006.en_US
dc.identifier.citedreferenceSusa M, Milane L, Amiji MM, Hornicek FJ, Duan Z. Nanoparticles: a promising modality in the treatment of sarcomas. Pharm Res 2011, 28: 260 – 272.en_US
dc.identifier.citedreferenceVeiseh O, Gunn JW, Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 2010, 62: 284 – 304.en_US
dc.identifier.citedreferenceWheatley MA, Cochran M. Ultrasound contrast agents. J Drug Deliv Sci Technol 2013, 23: 57 – 72.en_US
dc.identifier.citedreferenceYu Y, Sun D. Superparamagnetic iron oxide nanoparticle ‘theranostics’ for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmacol 2010, 3: 117 – 130.en_US
dc.identifier.citedreferenceCaskey CF, Hu X, Ferrara KW. Leveraging the power of ultrasound for therapeutic design and optimization. J Control Release 2011, 156: 297 – 306.en_US
dc.identifier.citedreferenceGeis NA, Katus HA, Bekeredjian R. Microbubbles as a vehicle for gene and drug delivery: current clinical implications and future perspectives. Curr Pharm Des 2012, 18: 2166 – 2183.en_US
dc.identifier.citedreferenceJin CS, Zheng G. Liposomal nanostructures for photosensitizer delivery. Lasers Surg Med 2011, 43: 734 – 748.en_US
dc.identifier.citedreferenceKiessling F, Bzyl J, Fokong S, Siepmann M, Schmitz G, Palmowski M. Targeted ultrasound imaging of cancer: an emerging technology on its way to clinics. Curr Pharm Des 2012, 18: 2184 – 2199.en_US
dc.identifier.citedreferenceKiessling F, Fokong S, Koczera P, Lederle W, Lammers T. Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 2012, 53: 345 – 348.en_US
dc.identifier.citedreferenceLammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image‐guided drug delivery: current concepts and future directions. Mol Pharm 2010, 7: 1899 – 1912.en_US
dc.identifier.citedreferenceWinter P, Caruthers S, Zhang H, Williams T, Wickline S, Lanza G. Antiangiogenic synergism of integrin‐targeted fumagillin nanoparticles and atorvastatin in atherosclerosis. J Am Coll Cardiol Img 2008, 1: 624 – 634.en_US
dc.identifier.citedreferenceLum A, Borden M, Dayton P, Kruse D, Simon S, Ferrara K. Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. J Control Release 2006, 111: 128 – 134.en_US
dc.identifier.citedreferenceMaeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor‐selective macromolecular drug targeting Advan. Enzyme Regul 2001, 41: 189 – 207.en_US
dc.identifier.citedreferenceMaeda H, Sawa T, Konno T. Mechanism of tumor‐targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 2001, 74: 47 – 61.en_US
dc.identifier.citedreferenceHashimoto K, Kataoka N, Nakamura E, Hagihara K, Okamoto T, Kanouchi H, Mohri S, Tsujioka K, Kajiya F. Live‐cell visualization of the trans‐cellular mode of monocyte transmigration across the vascular endothelium, and its relationship with endothelial PECAM‐1. J Physiol Sci 2012, 62: 63 – 69.en_US
dc.identifier.citedreferenceGane J, Stockley R. Mechanisms of neutrophil transmigration across the vascular endothelium in COPD. Thorax 2012, 67: 553 – 561.en_US
dc.identifier.citedreferenceWilliams MR, Sakurai Y, Zughaier SM, Eskin SG, McIntire LV. Transmigration across activated endothelium induces transcriptional changes, inhibits apoptosis, and decreases antimicrobial protein expression in human monocytes. J Leukoc Biol 2009, 86: 1331 – 1343.en_US
dc.identifier.citedreferenceSarantos MR, Zhang H, Schaff UY, Dixit N, Hayenga HN, Lowell CA, Simon SI. Transmigration of neutrophils across inflamed endothelium is signaled through LFA‐1 and Src family kinase. J Immunol 2008, 181: 8660 – 8669.en_US
dc.identifier.citedreferenceIssa Y, Nummer D, Seibel T, Muerkoster SS, Koch M, Schmitz‐Winnenthal FH, Galindo L, Weitz J, Beckhove P, Altevogt P. Enhanced L1CAM expression on pancreatic tumor endothelium mediates selective tumor cell transmigration. J Mol Med (Berl) 2009, 87: 99 – 112.en_US
dc.identifier.citedreferenceSchrage A, Wechsung K, Neumann K, Schumann M, Schulzke JD, Engelhardt B, Zeitz M, Hamann A, Klugewitz K. Enhanced T cell transmigration across the murine liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines. Hepatology 2008, 48: 1262 – 1272.en_US
dc.identifier.citedreferenceVestweber D. Adhesion and signaling molecules controlling the transmigration of leukocytes through endothelium. Immunol Rev 2007, 218: 178 – 196.en_US
dc.identifier.citedreferenceZozulya AL, Reinke E, Baiu DC, Karman J, Sandor M, Fabry Z. Dendritic cell transmigration through brain microvessel endothelium is regulated by MIP‐1α chemokine and matrix metalloproteinases. J Immunol 2007, 178: 520 – 529.en_US
dc.identifier.citedreferenceJohnson LA, Clasper S, Holt AP, Lalor PF, Baban D, Jackson DG. An inflammation‐induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 2006, 203: 2763 – 2777.en_US
dc.identifier.citedreferenceDi Pasquale G, Chiorini JA. AAV transcytosis through barrier epithelia and endothelium. Mol Ther 2006, 13: 506 – 516.en_US
dc.identifier.citedreferenceHu M, Lin X, Du Q, Miller EJ, Wang P, Simms HH. Regulation of polymorphonuclear leukocyte apoptosis: role of lung endothelium‐epithelium bilayer transmigration. Am J Physiol Lung Cell Mol Physiol 2005, 288: L266 – L274.en_US
dc.identifier.citedreferenceSalmi M, Koskinen K, Henttinen T, Elima K, Jalkanen S. CLEVER‐1 mediates lymphocyte transmigration through vascular and lymphatic endothelium. Blood 2004, 104: 3849 – 3857.en_US
dc.identifier.citedreferenceKoskinen K, Vainio PJ, Smith DJ, Pihlavisto M, Yla‐Herttuala S, Jalkanen S, Salmi M. Granulocyte transmigration through the endothelium is regulated by the oxidase activity of vascular adhesion protein‐1 (VAP‐1). Blood 2004, 103: 3388 – 3395.en_US
dc.identifier.citedreferenceMcIntosh DP, Tan XY, Oh P, Schnitzer JE. Targeting endothelium and its dynamic caveolae for tissue‐specific transcytosis in vivo: a pathway to overcome cell barriers to drug and gene delivery. Proc Natl Acad Sci U S A 2002, 99: 1996 – 2001.en_US
dc.identifier.citedreferenceShaw SK, Bamba PS, Perkins BN, Luscinskas FW. Real‐time imaging of vascular endothelial‐cadherin during leukocyte transmigration across endothelium. J Immunol 2001, 167: 2323 – 2330.en_US
dc.identifier.citedreferenceMuller WA, Randolph GJ. Migration of leukocytes across endothelium and beyond: molecules involved in the transmigration and fate of monocytes. J Leukoc Biol 1999, 66: 698 – 704.en_US
dc.identifier.citedreferenceWeber KS, Draude G, Erl W, de Martin R, Weber C. Monocyte arrest and transmigration on inflamed endothelium in shear flow is inhibited by adenovirus‐mediated gene transfer of IκB‐α. Blood 1999, 93: 3685 – 3693.en_US
dc.identifier.citedreferenceAllavena P, Del Maschio A. Leukocyte transmigration through vascular endothelium. An in vitro method. Methods Mol Biol 1999, 96: 171 – 176.en_US
dc.identifier.citedreferencePredescu D, Predescu S, McQuistan T, Palade GE. Transcytosis of α1‐acidic glycoprotein in the continuous microvascular endothelium. Proc Natl Acad Sci U S A 1998, 95: 6175 – 6180.en_US
dc.identifier.citedreferenceYong KL, Watts M, Shaun Thomas N, Sullivan A, Ings S, Linch DC. Transmigration of CD34+ cells across specialized and nonspecialized endothelium requires prior activation by growth factors and is mediated by PECAM‐1 (CD31). Blood 1998, 91: 1196 – 1205.en_US
dc.identifier.citedreferenceBroadwell RD, Baker‐Cairns BJ, Friden PM, Oliver C, Villegas JC. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. III. Receptor‐mediated transcytosis through the blood‐brain barrier of blood‐borne transferrin and antibody against the transferrin receptor. Exp Neurol 1996, 142: 47 – 65.en_US
dc.identifier.citedreferenceSchnitzer JE, Oh P, Pinney E, Allard J. Filipin‐sensitive caveolae‐mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J Cell Biol 1994, 127: 1217 – 1232.en_US
dc.identifier.citedreferencePredescu D, Horvat R, Predescu S, Palade GE. Transcytosis in the continuous endothelium of the myocardial microvasculature is inhibited by N‐ethylmaleimide. Proc Natl Acad Sci U S A 1994, 91: 3014 – 3018.en_US
dc.identifier.citedreferenceVillegas JC, Broadwell RD. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. II. Adsorptive transcytosis of WGA‐HRP and the blood‐brain and brain‐blood barriers. J Neurocytol 1993, 22: 67 – 80.en_US
dc.identifier.citedreferenceMoser R, Fehr J, Bruijnzeel PL. IL‐4 controls the selective endothelium‐driven transmigration of eosinophils from allergic individuals. J Immunol 1992, 149: 1432 – 1438.en_US
dc.identifier.citedreferenceMay MJ, Ager A. ICAM‐1‐independent lymphocyte transmigration across high endothelium: differential up‐regulation by interferon γ, tumor necrosis factor‐α and interleukin 1 β. Eur J Immunol 1992, 22: 219 – 226.en_US
dc.identifier.citedreferenceGalis Z, Ghitescu L, Simionescu M. Fatty acids binding to albumin increases its uptake and transcytosis by the lung capillary endothelium. Eur J Cell Biol 1988, 47: 358 – 365.en_US
dc.identifier.citedreferenceBalin BJ, Broadwell RD. Transcytosis of protein through the mammalian cerebral epithelium and endothelium. I. Choroid plexus and the blood‐cerebrospinal fluid barrier. J Neurocytol 1988, 17: 809 – 826.en_US
dc.identifier.citedreferencePawlowski NA, Kaplan G, Abraham E, Cohn ZA. The selective binding and transmigration of monocytes through the junctional complexes of human endothelium. J Exp Med 1988, 168: 1865 – 1882.en_US
dc.identifier.citedreferencePredescu D, Simionescu M, Simionescu N, Palade GE. Binding and transcytosis of glycoalbumin by the microvascular endothelium of the murine myocardium: evidence that glycoalbumin behaves as a bifunctional ligand. J Cell Biol 1988, 107: 1729 – 1738.en_US
dc.identifier.citedreferenceMilici AJ, Watrous NE, Stukenbrok H, Palade GE. Transcytosis of albumin in capillary endothelium. J Cell Biol 1987, 105: 2603 – 2612.en_US
dc.identifier.citedreferenceVasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low‐density lipoprotein in the arterial endothelium in situ. J Cell Biol 1983, 96: 1677 – 1689.en_US
dc.identifier.citedreferenceCarver LA, Schnitzer JE. Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 2003, 3: 571 – 581.en_US
dc.identifier.citedreferenceOh P, Li Y, Yu J, Durr E, Krasinska KM, Carver LA, Testa JE, Schnitzer JE. Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue‐specific therapy. Nature 2004, 429: 629 – 635.en_US
dc.identifier.citedreferenceOh P, Borgstrom P, Witkiewicz H, Li Y, Borgstrom BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, et al. Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 2007, 25: 327 – 337.en_US
dc.identifier.citedreferenceMassey KA, Schnitzer JE. Targeting and imaging signature caveolar molecules in lungs. Proc Am Thorac Soc 2009, 6: 419 – 430.en_US
dc.identifier.citedreferenceChrastina A, Valadon P, Massey KA, Schnitzer JE. Lung vascular targeting using antibody to aminopeptidase P: CT‐SPECT imaging, biodistribution and pharmacokinetic analysis. J Vasc Res 2010, 47: 531 – 543.en_US
dc.identifier.citedreferenceMassey KA, Schnitzer JE. Caveolae and cancer. Recent Results Cancer Res 2010, 180: 217 – 231.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.