Show simple item record

Structural basis for myosin V discrimination between distinct cargoes

dc.contributor.authorPashkova, Natashaen_US
dc.contributor.authorJin, Yuien_US
dc.contributor.authorRamaswamy, Sen_US
dc.contributor.authorWeisman, Lois Sen_US
dc.date.accessioned2014-01-08T20:34:30Z
dc.date.available2014-01-08T20:34:30Z
dc.date.issued2006-02-22en_US
dc.identifier.citationPashkova, Natasha; Jin, Yui; Ramaswamy, S; Weisman, Lois S (2006). "Structural basis for myosin V discrimination between distinct cargoes." The EMBO Journal 25(4): 693-700. <http://hdl.handle.net/2027.42/102086>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102086
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherMyosin Ven_US
dc.subject.otherMembrane Transporten_US
dc.subject.otherCargo‐Binding Domainen_US
dc.subject.otherMyo2pen_US
dc.titleStructural basis for myosin V discrimination between distinct cargoesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid16437158en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102086/1/emboj7600965.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102086/2/emboj7600965-sup-0001.pdf
dc.identifier.doi10.1038/sj.emboj.7600965en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceTerwilliger TC ( 1994 ) MAD phasing: bayesian estimates of Fa. Acta Crystallogr D 50: 11 – 16en_US
dc.identifier.citedreferencePashkova N, Catlett NL, Novak JL, Wu G, Lu R, Cohen RE, Weisman LS ( 2005 ) Myosin V attachment to cargo requires the tight association of two functional subdomains. J Cell Biol 168: 359 – 364en_US
dc.identifier.citedreferencePflugrath JW ( 1999 ) The finer things in X‐ray diffraction data collection. Acta Crystallogr D 55 (Part 10): 1718 – 1725en_US
dc.identifier.citedreferenceProvance DW, James TL, Mercer JA ( 2002 ) Melanophilin, the product of the leaden locus, is required for targeting of myosin‐Va to melanosomes. Traffic 3: 124 – 132en_US
dc.identifier.citedreferenceRossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O‧Connor J, Glick BS ( 2001 ) A role for actin, Cdc1p, and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 153: 47 – 62en_US
dc.identifier.citedreferenceSchott D, Ho J, Pruyne D, Bretscher A ( 1999 ) The COOH‐terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147: 791 – 808en_US
dc.identifier.citedreferenceTama F, Feig M, Liu J, Brooks III CL, Taylor KA ( 2005 ) The requirement for mechanical coupling between head and S2 domains in smooth muscle myosin ATPase regulation and its implications for dimeric motor function. J Mol Biol 345: 837 – 854en_US
dc.identifier.citedreferenceTang F, Kauffman EJ, Novak JL, Nau JJ, Catlett NL, Weisman LS ( 2003 ) Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole. Nature 422: 87 – 92en_US
dc.identifier.citedreferenceTerwilliger TC ( 2000 ) Maximum‐likelihood density modification. Acta Crystallogr D 56 (Part 8): 965 – 972en_US
dc.identifier.citedreferenceTerwilliger TC ( 2003 ) Automated side‐chain model building and sequence assignment by template matching. Acta Crystallogr D 59: 45 – 49en_US
dc.identifier.citedreferenceTerwilliger TC, Berendzen J ( 1997 ) Bayesian correlated MAD phasing. Acta Crystallogr D 53: 571 – 579en_US
dc.identifier.citedreferenceTerwilliger TC, Eisenberg D ( 1983 ) Unbiased three‐dimensional refinement of heavy‐atom parameters by correlation of origin‐removed Patterson functions. Acta Crystallogr A 39: 813 – 817en_US
dc.identifier.citedreferenceTerwilliger TC, Eisenberg D ( 1987 ) Isomorphous replacement: effects of errors on the phase probability distribution. Acta Crystallogr A 43: 6 – 13en_US
dc.identifier.citedreferenceTerwilliger TC, Kim S‐H, Eisenberg D ( 1987 ) Generalized method of determining heavy‐atom positions using the difference Patterson function. Acta Crystallogr A 43: 1 – 5en_US
dc.identifier.citedreferenceThompson JD, Higgins DG, Gibson TJ ( 1994 ) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position‐specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673 – 4680en_US
dc.identifier.citedreferenceTrybus KM, Huiatt TW, Lowey S ( 1982 ) A bent monomeric conformation of myosin from smooth muscle. Proc Natl Acad Sci USA 79: 6151 – 6155en_US
dc.identifier.citedreferenceWang F, Thirumurugan K, Stafford WF, Hammer III JA, Knight PJ, Sellers JR ( 2004 ) Regulated conformation of myosin V. J Biol Chem 279: 2333 – 2336en_US
dc.identifier.citedreferenceWendt T, Taylor D, Trybus KM, Taylor K ( 2001 ) Three‐dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci USA 98: 4361 – 4366en_US
dc.identifier.citedreferenceWu XS, Rao K, Zhang H, Wang F, Sellers JR, Matesic LE, Copeland NG, Jenkins NA, Hammer III JA ( 2002 ) Identification of an organelle receptor for myosin‐Va. Nat Cell Biol 4: 271 – 278en_US
dc.identifier.citedreferenceYin H, Pruyne D, Huffaker TC, Bretscher A ( 2000 ) Myosin V orientates the mitotic spindle in yeast. Nature 406: 1013 – 1015en_US
dc.identifier.citedreferenceBeach DL, Thibodeaux J, Maddox P, Yeh E, Bloom K ( 2000 ) The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10: 1497 – 1506en_US
dc.identifier.citedreferenceBoldogh IR, Ramcharan SL, Yang HC, Pon LA ( 2004 ) A type V myosin (Myo2p) and a Rab‐like G‐protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol Biol Cell 15: 3994 – 4002en_US
dc.identifier.citedreferenceCatlett NL, Duex JE, Tang F, Weisman LS ( 2000 ) Two distinct regions in a yeast myosin‐V tail domain are required for the movement of different cargoes. J Cell Biol 150: 513 – 526en_US
dc.identifier.citedreferenceCatlett NL, Weisman LS ( 1998 ) The terminal tail region of a yeast myosin‐V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci USA 95: 14799 – 14804en_US
dc.identifier.citedreferenceDoublie S, Kapp U, Aberg A, Brown K, Strub K, Cusak S ( 1996 ) Crystallization and preliminary X‐ray analysis of the 9 kDa protein of the mouse signal recognition particle and the selenomethionyl‐SRP9. FEBS Lett 384: 219 – 221en_US
dc.identifier.citedreferenceEstrada P, Kim J, Coleman J, Walker L, Dunn B, Takizawa P, Novick P, Ferro‐Novick S ( 2003 ) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 163: 1255 – 1266en_US
dc.identifier.citedreferenceFriedman DS, Vale RD ( 1999 ) Single‐molecule analysis of kinesin motility reveals regulation by the cargo‐binding tail domain. Nat Cell Biol 1: 293 – 297en_US
dc.identifier.citedreferenceFukuda M, Kuroda TS ( 2002 ) Slac2‐c (synaptotagmin‐like protein homologue lacking C2 domains‐c), a novel linker protein that interacts with Rab27, myosin Va/VIIa, and actin. J Biol Chem 277: 43096 – 43103en_US
dc.identifier.citedreferenceGlaser F, Pupko T, Paz I, Bell RE, Bechor‐Shental D, Martz E, Ben‐Tal N ( 2003 ) ConSurf: identification of functional regions in proteins by surface‐mapping of phylogenetic information. Bioinformatics 19: 163 – 164en_US
dc.identifier.citedreferenceGovindan B, Bowser R, Novick P ( 1995 ) The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 128: 1055 – 1068en_US
dc.identifier.citedreferenceHackney DD, Stock MF ( 2000 ) Kinesin's IAK tail domain inhibits initial microtubule‐stimulated ADP release. Nat Cell Biol 2: 257 – 260en_US
dc.identifier.citedreferenceHill KL, Catlett NL, Weisman LS ( 1996 ) Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 135: 1535 – 1549en_US
dc.identifier.citedreferenceHoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH ( 2001 ) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155: 979 – 990en_US
dc.identifier.citedreferenceHume AN, Collinson LM, Hopkins CR, Strom M, Barral DC, Bossi G, Griffiths GM, Seabra MC ( 2002 ) The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes. Traffic 3: 193 – 202en_US
dc.identifier.citedreferenceIkebe M, Hinkins S, Hartshorne DJ ( 1983 ) Correlation of enzymatic properties and conformation of smooth muscle myosin. Biochemistry 22: 4580 – 4587en_US
dc.identifier.citedreferenceIshikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS ( 2003 ) Identification of an organelle‐specific myosin V receptor. J Cell Biol 160: 887 – 897en_US
dc.identifier.citedreferenceItoh T, Toh EA, Matsui Y ( 2004 ) Mmr1p is a mitochondrial factor for Myo2p‐dependent inheritance of mitochondria in the budding yeast. EMBO J 23: 2520 – 2530en_US
dc.identifier.citedreferenceIzard T, Evans G, Borgon RA, Rush CL, Bricogne G, Bois PR ( 2004 ) Vinculin activation by talin through helical bundle conversion. Nature 427: 171 – 175en_US
dc.identifier.citedreferenceJones TA, Zou JY, Cowan SW, Kjeldgaard M ( 1991 ) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47 (Part 2): 110 – 119en_US
dc.identifier.citedreferenceKrementsov DN, Krementsova EB, Trybus KM ( 2004 ) Myosin V: regulation by calcium, calmodulin, and the tail domain. J Cell Biol 164: 877 – 886en_US
dc.identifier.citedreferenceKusunoki H, MacDonald RI, Mondragon A ( 2004 ) Structural insights into the stability and flexibility of unusual erythroid spectrin repeats. Structure (Camb) 12: 645 – 656en_US
dc.identifier.citedreferenceLapierre LA, Kumar R, Hales CM, Navarre J, Bhartur SG, Burnette JO, Provance Jr DW, Mercer JA, Bahler M, Goldenring JR ( 2001 ) Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 12: 1843 – 1857en_US
dc.identifier.citedreferenceLi XD, Ikebe R, Ikebe M ( 2005 ) Activation of myosin Va function by melanophilin, a specific docking partner of myosin Va. J Biol Chem 280: 17815 – 17822en_US
dc.identifier.citedreferenceLi XD, Mabuchi K, Ikebe R, Ikebe M ( 2004 ) Ca2+‐induced activation of ATPase activity of myosin Va is accompanied with a large conformational change. Biochem Biophys Res Commun 315: 538 – 545en_US
dc.identifier.citedreferenceMurshudov GN, Vagin AA, Dodson EJ ( 1997 ) Refinement of macromolecular structures by the maximum‐likelihood method. Acta Crystallogr D 53: 240 – 255en_US
dc.identifier.citedreferenceNagashima K, Torii S, Yi Z, Igarashi M, Okamoto K, Takeuchi T, Izumi T ( 2002 ) Melanophilin directly links Rab27a and myosin Va through its distinct coiled‐coil regions. FEBS Lett 517: 233 – 238en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.