Show simple item record

DNA sequence‐dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins

dc.contributor.authorDlakić, Mensuren_US
dc.contributor.authorGrinberg, Asya V.en_US
dc.contributor.authorLeonard, David A.en_US
dc.contributor.authorKerppola, Tom K.en_US
dc.date.accessioned2014-01-08T20:34:31Z
dc.date.available2014-01-08T20:34:31Z
dc.date.issued2001-02-15en_US
dc.identifier.citationDlakić, Mensur ; Grinberg, Asya V.; Leonard, David A.; Kerppola, Tom K. (2001). "DNA sequenceâ dependent folding determines the divergence in binding specificities between Maf and other bZIP proteins." The EMBO Journal 20(4): 828-840. <http://hdl.handle.net/2027.42/102089>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102089
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherProtease Cleavageen_US
dc.subject.otherAncillary DNA‐Binding Regionen_US
dc.subject.otherBasic Regionen_US
dc.subject.otherCoil‐To‐Helix Transitionen_US
dc.subject.otherDNA Contact Mappingen_US
dc.titleDNA sequence‐dependent folding determines the divergence in binding specificities between Maf and other bZIP proteinsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid11179227en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102089/1/emboj7593588.pdf
dc.identifier.doi10.1093/emboj/20.4.828en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferencePabo CO, Aggarwal AK, Jordan SR, Beamer LJ, Obeysekare UR and Harrison SC ( 1990 ) Conserved residues make similar contacts in two repressor–operator complexes. Science, 247, 1210 – 1213.en_US
dc.identifier.citedreferenceKonig P and Richmond TJ ( 1993 ) The X‐ray structure of the GCN4‐bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol, 233, 139 – 154.en_US
dc.identifier.citedreferenceKophengnavong T, Carroll AS and Blackwell TK ( 1999 ) The SKN‐1 amino‐terminal arm is a DNA specificity segment. Mol Cell Biol, 19, 3039 – 3050.en_US
dc.identifier.citedreferenceLaskowski RA, MacArthur MW, Moss DS and Thornton JM ( 1993 ) PROCHECK: a program to check stereochemical quality of protein structures. J Appl Crystallogr, 26, 283 – 290.en_US
dc.identifier.citedreferenceLefstin JA and Yamamoto KR ( 1998 ) Allosteric effects of DNA on transcriptional regulators. Nature, 392, 885 – 888.en_US
dc.identifier.citedreferenceLeonard DA, Rajaram N and Kerppola TK ( 1997 ) Structural basis of DNA bending and oriented heterodimer binding by the basic leucine zipper domains of Fos and Jun. Proc Natl Acad Sci USA, 94, 4913 – 4918.en_US
dc.identifier.citedreferenceLi B, Tournier C, Davis RJ and Flavell RA ( 1999 ) Regulation of IL‐4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J, 18, 420 – 432.en_US
dc.identifier.citedreferenceNakabeppu Y and Nathans D ( 1989 ) The basic region of Fos mediates specific DNA binding. EMBO J, 8, 3833 – 3841.en_US
dc.identifier.citedreferenceNishizawa M, Kataoka K, Goto N, Fujiwara KT and Kawai S ( 1989 ) v‐ maf, a viral oncogene that encodes a ‘leucine zipper’ motif. Proc Natl Acad Sci USA, 86, 7711 – 7715.en_US
dc.identifier.citedreferenceOgino H and Yusuda K ( 1998 ) Induction of lens differentiation by activation of a bZIP transcription factor, L‐Maf. Science, 280, 115 – 118.en_US
dc.identifier.citedreferenceOyake T, Itoh K, Motohashi H, Hayashi N, Hoshino H, Nishizawa M, Yamamoto M and Igarashi K ( 1996 ) Bach proteins belong to a novel family of BTB‐basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF‐E2 site. Mol Cell Biol, 16, 6083 – 6095.en_US
dc.identifier.citedreferencePatel L, Abate C and Curran T ( 1990 ) Altered protein conformation on DNA binding by Fos and Jun. Nature, 347, 572 – 575.en_US
dc.identifier.citedreferenceRamirez‐Carrozzi VR and Kerppola TK ( 2001 ) Long‐range electrostatic interactions influence the orientation of Fos–Jun binding at AP‐1 sites. J Mol Biol, 305, 411 – 427.en_US
dc.identifier.citedreferenceRupert PB, Daughdrill GW, Bowerman B and Matthews BW ( 1998 ) A new DNA‐binding motif in the Skn‐1 binding domain–DNA complex. Nature Struct Biol, 5, 484 – 491.en_US
dc.identifier.citedreferenceSali A, Potterton L, Yuan F, van Vlijmen H and Karplus M ( 1995 ) Evaluation of comparative protein modeling by MODELLER. Proteins, 23, 318 – 326.en_US
dc.identifier.citedreferenceSchneider TD ( 1996 ) Reading of DNA sequence logos: prediction of major groove binding by information theory. Methods Enzymol, 274, 445 – 455.en_US
dc.identifier.citedreferenceSippl MJ ( 1993 ) Recognition of errors in three‐dimensional structures of proteins. Proteins, 17, 355 – 362.en_US
dc.identifier.citedreferenceSwaroop A, Xu JZ, Pawar H, Jackson A, Skolnick C and Agarwal N ( 1992 ) A conserved retina‐specific gene encodes a basic motif/leucine zipper domain. Proc Natl Acad Sci USA, 89, 266 – 270.en_US
dc.identifier.citedreferenceTullius TD and Dombroski BA ( 1986 ) Hydroxyl radical ‘footprinting’: high‐resolution information about DNA–protein contacts and application to λ repressor and Cro protein. Proc Natl Acad Sci USA, 83, 5469 – 5473.en_US
dc.identifier.citedreferenceVinson CR, Sigler PB and McKnight SL ( 1989 ) Scissors‐grip model for DNA recognition by a family of leucine zipper proteins. Science, 246, 911 – 916.en_US
dc.identifier.citedreferenceWeiss MA, Ellenberger T, Wobbe CR, Lee JP, Harrison SC and Struhl K ( 1990 ) Folding transition in the DNA‐binding domain of GCN4 on specific binding to DNA. Nature, 347, 575 – 578.en_US
dc.identifier.citedreferenceAndrews NC, Erdjument BH, Davidson MB, Tempst P and Orkin SH ( 1993 ) Erythroid transcription factor NF‐E2 is a haematopoietic‐specific basic–leucine zipper protein. Nature, 362, 722 – 728.en_US
dc.identifier.citedreferenceBlank V and Andrews NC ( 1997 ) The Maf transcription factors: regulators of differentiation. Trends Biochem Sci, 22, 437 – 441.en_US
dc.identifier.citedreferenceCarroll AS, Gilbert DE, Liu X, Cheung JW, Michnowicz JE, Wagner G, Ellenberer TE and Blackwell TK ( 1997 ) SKN‐1 domain folding and basic region monomer stabilization upon DNA binding. Genes Dev, 11, 2227 – 2238.en_US
dc.identifier.citedreferenceChen YH, Yang JT and Chau KH ( 1974 ) Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry, 13, 3350 – 3359.en_US
dc.identifier.citedreferenceDiamond MI, Miner JN, Yoshinaga SK and Yamamoto KR ( 1990 ) Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science, 249, 1266 – 1272.en_US
dc.identifier.citedreferenceEllenberger TE, Brandl CJ, Struhl K and Harrison SC ( 1992 ) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α helices: crystal structure of the protein–DNA complex. Cell, 71, 1223 – 1237.en_US
dc.identifier.citedreferenceFraenkel E, Rould MA, Chambers KA and Pabo CO ( 1998 ) Engrailed homeodomain–DNA complex at 2.2 Å resolution: a detailed view of the interface and comparison with other engrailed structures. J Mol Biol, 284, 351 – 361.en_US
dc.identifier.citedreferenceGlover JN and Harrison SC ( 1995 ) Crystal structure of the heterodimeric bZIP transcription factor c‐Fos–c‐Jun bound to DNA. Nature, 373, 257 – 261.en_US
dc.identifier.citedreferenceHarrison SC ( 1991 ) A structural taxonomy of DNA‐binding domains. Nature, 353, 715 – 719.en_US
dc.identifier.citedreferenceHenikoff JG, Henikoff S and Pietrokovski S ( 1999 ) New features of the Blocks Database servers. Nucleic Acids Res, 27, 226 – 228.en_US
dc.identifier.citedreferenceHo IC, Lo D and Glimcher LH ( 1998 ) c‐Maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4‐dependent and ‐independent mechanisms. J Exp Med, 188, 1859 – 1866.en_US
dc.identifier.citedreferenceIgarashi K, Kataoka K, Itoh K, Hayashi N, Nishizawa M and Yamamoto M ( 1994 ) Regulation of transcription by dimerization of erythroid factor NF‐E2 p45 with small Maf proteins. Nature, 367, 568 – 572.en_US
dc.identifier.citedreferenceItoh K, Igarashi K, Hayashi N, Nishizawa M and Yamamoto M ( 1995 ) Cloning and characterization of a novel erythroid cell‐derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Mol Cell Biol, 15, 4184 – 4193.en_US
dc.identifier.citedreferenceJohnsen O, Murphy P, Prydz H and Kolsto AB ( 1998 ) Interaction of the CNC‐bZIP factor TCF11/LCR‐F1/Nrf1 with MafG: binding‐site selection and regulation of transcription. Nucleic Acids Res, 26, 512 – 520.en_US
dc.identifier.citedreferenceJones DT, Taylor WR and Thornton JM ( 1992 ) A new approach to protein fold recognition. Nature, 358, 86 – 89.en_US
dc.identifier.citedreferenceKataoka K, Noda M and Nishizawa M ( 1994 ) Maf nuclear oncoprotein recognizes sequences related to an AP‐1 site and forms heterodimers with both Fos and Jun. Mol Cell Biol, 14, 700 – 712.en_US
dc.identifier.citedreferenceKelly LM, Englmeier U, Lafon I, Sieweke MH and Graf T ( 2000 ) MafB is an inducer of monocytic differentiation. EMBO J, 19, 1987 – 1997.en_US
dc.identifier.citedreferenceKerppola TK and Curran T ( 1994a ) A conserved region adjacent to the basic domain is required for recognition of an extended DNA binding site by Maf/Nrl family proteins. Oncogene, 9, 3149 – 3158.en_US
dc.identifier.citedreferenceKerppola TK and Curran T ( 1994b ) Maf and Nrl can bind to AP‐1 sites and form heterodimers with Fos and Jun. Oncogene, 9, 675 – 684.en_US
dc.identifier.citedreferenceKim JI, Li T, Ho I, Grusby MJ and Glimcher LH ( 1999 ) Requirement for the c‐Maf transcription factor in crystallin gene regulation and lens development. Proc Natl Acad Sci USA, 96, 3781 – 3785.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.