Show simple item record

Improved asymmetry prediction for short interfering RNA s

dc.contributor.authorMalefyt, Amanda P.en_US
dc.contributor.authorWu, Mingen_US
dc.contributor.authorVocelle, Daniel B.en_US
dc.contributor.authorKappes, Sean J.en_US
dc.contributor.authorLindeman, Stephen D.en_US
dc.contributor.authorChan, Christinaen_US
dc.contributor.authorWalton, S. Patricken_US
dc.date.accessioned2014-01-08T20:34:34Z
dc.date.available2015-03-02T14:35:34Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationMalefyt, Amanda P.; Wu, Ming; Vocelle, Daniel B.; Kappes, Sean J.; Lindeman, Stephen D.; Chan, Christina; Walton, S. Patrick (2014). "Improved asymmetry prediction for short interfering RNA s." FEBS Journal (1): 320-330.en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102096
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAsymmetryen_US
dc.subject.otherEnhanced Green Fluorescent Proteinen_US
dc.subject.otherShort Interfering RNAen_US
dc.subject.otherDs RNA ‐Dependent Protein Kinase  Ren_US
dc.titleImproved asymmetry prediction for short interfering RNA sen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102096/1/febs12599.pdf
dc.identifier.doi10.1111/febs.12599en_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceYang X & Chan C ( 2009 ) Repression of PKR mediates palmitate‐induced apoptosis in HepG2 cells through regulation of Bcl‐2. Cell Res 19, 469 – 486.en_US
dc.identifier.citedreferenceNoland CL, Ma E & Doudna JA ( 2011 ) siRNA repositioning for guide strand selection by human dicer complexes. Mol Cell 43, 110 – 121.en_US
dc.identifier.citedreferenceBetancur JG & Tomari Y ( 2012 ) Dicer is dispensable for asymmetric RISC loading in mammals. RNA 18, 24 – 30.en_US
dc.identifier.citedreferenceReynolds A, Leake D, Boese Q, Scaringe S, Marshall WS & Khvorova A ( 2004 ) Rational siRNA design for RNA interference. Nat Biotechnol 22, 326 – 330.en_US
dc.identifier.citedreferenceAmarzguioui M & Prydz H ( 2004 ) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316, 1050 – 1058.en_US
dc.identifier.citedreferenceUi‐Tei K, Naito Y, Takahashi F, Haraguchi T, Ohki‐Hamazaki H, Juni A, Ueda R & Saigo K ( 2004 ) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32, 936 – 948.en_US
dc.identifier.citedreferenceLu ZJ & Mathews DH ( 2008 ) Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 36, 640 – 647.en_US
dc.identifier.citedreferenceIchihara M, Murakumo Y, Masuda A, Matsuura T, Asai N, Jijiwa M, Shinmi J, Yatsuya H, Qiao S, Takahashi M et al. ( 2007 ) Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activites. Nucleic Acids Res 35, e123.en_US
dc.identifier.citedreferenceWalton SP, Wu M, Gredell JA & Chan C ( 2010 ) Designing highly active siRNAs for therapeutic applications. FEBS J 277, 4806 – 4813.en_US
dc.identifier.citedreferenceLaraki G, Clerzius G, Daher A, Melendez‐Pena C, Daniels S & Gatignol A ( 2008 ) Interactions between the double‐stranded RNA‐binding proteins TRBP and PACT define the Medipal domain that mediates protein–protein interactions. RNA Biol 5, 92 – 103.en_US
dc.identifier.citedreferenceBirmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, Karpilow J & Khvorova A ( 2007 ) A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2, 2068 – 2078.en_US
dc.identifier.citedreferenceMysara M, Garibaldi JM & El Hefnawi M ( 2011 ) MysiRNA‐Designer: a workflow for efficient siRNA design. PLoS ONE 6, e25642.en_US
dc.identifier.citedreferenceHuesken D, Lange J, Mickanin C, Weiler J, Asselbergs F, Warner J, Meloon B, Engel S, Rosenberg A, Cohen D et al. ( 2005 ) Design of a genome‐wide siRNA library using an artificial neural network. Nat Biotechnol 23, 995 – 1001.en_US
dc.identifier.citedreferenceShabalina SA, Spiridonov AN & Ogurtsov AY ( 2006 ) Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinformatics 7, 65.en_US
dc.identifier.citedreferenceYuan B, Latek R, Hossbach M, Tuschl T & Lewitter F ( 2004 ) siRNA selection server: an automated siRNA oligonucleotide prediction server. Nucleic Acids Res 32, W130 – W134.en_US
dc.identifier.citedreferenceTakasaki S ( 2009 ) Selecting effective siRNA target sequences by using Bayes’ theorem. Comput Biol Chem 33, 368 – 372.en_US
dc.identifier.citedreferenceLadunga I ( 2006 ) More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res 35, 433 – 440.en_US
dc.identifier.citedreferenceMatveeva OV, Nechipurenko YD, Rossi L, Moore B, Saetrom P, Ogurtsov AY, Atkins JF & Shabalina SA ( 2007 ) Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res 35, e63.en_US
dc.identifier.citedreferenceKhvorova A, Reynolds A & Jayasena SD ( 2003 ) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209 – 216.en_US
dc.identifier.citedreferenceOverhoff M, Alken M, Far RK‐K, Lemaitre M, Lebleu B, Sczakiel G & Robbins I ( 2005 ) Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol 348, 871 – 881.en_US
dc.identifier.citedreferenceShao Y, Chan CY, Maliyekkel A, Lawrence CE, Roninson IB & Ding Y ( 2007 ) Effect of target secondary structure on RNAi efficiency. RNA 13, 1631 – 1640.en_US
dc.identifier.citedreferenceSeitz H, Tushir J & Zamore P ( 2011 ) A 5′‐uridine amplifies miRNA/miRNA* asymmetry in Drosophila by promoting RNA‐induced silencing complex formation. Silence 2011, 2:4.en_US
dc.identifier.citedreferenceXia T, SantaLucia J Jr, Burkard ME, Kierzek R, Schroeder SJ, Jiao X, Cox C & Turner DH ( 1998 ) Thermodynamic parameters for an expanded nearest‐neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37, 14719 – 14735.en_US
dc.identifier.citedreferenceFire A, Xu S, Montgomery M, Kostas S, Driver S & Mello C ( 1998 ) Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 391, 806 – 811.en_US
dc.identifier.citedreferenceMatranga C, Tomari Y, Shin C, Bartel DP & Zamore PD ( 2005 ) Passenger‐strand cleavage facilitates assembly of siRNA into Ago2‐containing RNAi enzyme complexes. Cell 123, 607 – 620.en_US
dc.identifier.citedreferenceElbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K & Tuschl T ( 2001 ) Duplexes of 21‐nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494 – 498.en_US
dc.identifier.citedreferencePollack A ( 2011 ) Drugmakers’ fever for the power of RNA interference has cooled. New York Times.en_US
dc.identifier.citedreferenceKrieg AM ( 2011 ) Is RNAi dead? Mol Ther 19, 1001 – 1002.en_US
dc.identifier.citedreferenceGitig D ( 2012 ) Use of siRNA in therapeutic arena on the upswing. Genet Eng Biotech News, 12, 24 – 26.en_US
dc.identifier.citedreferenceDavidson BL & McCray PB ( 2011 ) Current prospects for RNA interference‐based therapies. Nat Rev Genet 12, 329 – 340.en_US
dc.identifier.citedreferenceAngart P, Vocelle D, Chan C & Walton SP ( 2013 ) Design of siRNA therapeutics from the molecular scale. Pharmaceuticals 6, 440 – 468.en_US
dc.identifier.citedreferencePortis AM, Carballo G, Baker GL, Chan C & Walton SP ( 2010 ) Confocal microscopy for the analysis of siRNA delivery by polymeric nanoparticles. Microsc Res Tech 73, 878 – 885.en_US
dc.identifier.citedreferenceLu JJ, Langer R & Chen JZ ( 2009 ) A novel mechanism is involved in cationic lipid‐mediated functional siRNA delivery. Mol Pharmaceut 6, 763 – 771.en_US
dc.identifier.citedreferenceSiegwart DJ, Whitehead KA, Nuhn L, Sahay G, Cheng H, Jiang S, Ma M, Lytton‐Jean A, Vegas A, Fenton P et al. ( 2011 ) Combinatorial synthesis of chemically diverse core‐shell nanoparticles for intracellular delivery. Proc Natl Acad Sci USA 108, 12996 – 13001.en_US
dc.identifier.citedreferenceAmeres SL, Martinez J & Schroeder R ( 2007 ) Molecular basis for target RNA recognition and cleavage by human RISC. Cell 130, 101 – 112.en_US
dc.identifier.citedreferenceBrown KM, Chu C‐Y & Rana TM ( 2005 ) Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 12, 469 – 470.en_US
dc.identifier.citedreferenceGredell JA, Berger AK & Walton SP ( 2008 ) Impact of target mRNA structure on siRNA silencing efficiency: A large‐scale study. Biotechnol Bioeng 100, 744 – 755.en_US
dc.identifier.citedreferenceKiryu H, Terai G, Imamura O, Yoneyama H, Suzuki K & Asai K ( 2011 ) A detailed investigation of accessibilities around target sites of siRNAs and miRNAs. Bioinformatics 27, 1788 – 1797.en_US
dc.identifier.citedreferenceMacRae IJ, Ma E, Zhou M, Robinson CV & Doudna JA ( 2007 ) In vitro reconstitution of the human RISC‐loading complex. Proc Natl Acad Sci USA 105, 512 – 517.en_US
dc.identifier.citedreferenceManiataki E & Mourelatos Z ( 2005 ) A human, ATP‐independent, RISC assembly machine fueled by pre‐miRNA. Genes Dev 19, 2979 – 2990.en_US
dc.identifier.citedreferenceGredell JA, Dittmer MJ, Wu M, Chan C & Walton SP ( 2010 ) Recognition of siRNA asymmetry by TAR RNA binding protein. Biochemistry 49, 3148 – 3155.en_US
dc.identifier.citedreferenceKini HK & Walton SP ( 2009 ) Effect of siRNA terminal mismatches on TRBP and Dicer binding and silencing efficacy. FEBS J 276, 6576 – 6585.en_US
dc.identifier.citedreferenceRivas FV, Tolia NH, Song JJ, Aragon JP, Liu JD, Hannon GJ & Joshua‐Tor L ( 2005 ) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12, 340 – 349.en_US
dc.identifier.citedreferenceChendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K & Shiekhattar R ( 2005 ) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740 – 744.en_US
dc.identifier.citedreferenceHaase AD, Jaskiewicz L, Zhang H, Laine S, Sack R, Gatignol A & Filipowicz W ( 2005 ) TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep 6, 961 – 967.en_US
dc.identifier.citedreferenceLima WF, Murray H, Nichols JG, Wu H, Sun H, Prakash TP, Berdeja AR, Gaus HJ & Crooke ST ( 2009 ) Human Dicer binds short single‐strand and double‐strand RNA with high affinity and interacts with different regions of the nucleic acids. J Biol Chem 284, 2535 – 2548.en_US
dc.identifier.citedreferenceKok KH, Ng MHJ, Ching YP & Jin DY ( 2007 ) Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA. J Biol Chem 282, 17649 – 17657.en_US
dc.identifier.citedreferenceLee Y, Hur I, Park SY, Kim YK, Suh MR & Kim VN ( 2006 ) The role of PACT in the RNA silencing pathway. EMBO J 25, 522 – 532.en_US
dc.identifier.citedreferenceYe X, Huang N, Liu Y, Paroo Z, Huerta C, Li P, Chen S, Liu Q & Zhang H ( 2011 ) Structure of C3PO and mechanism of human RISC activation. Nat Struct Mol Biol 18, 650 – 657.en_US
dc.identifier.citedreferenceTomari Y, Matranga C, Haley B, Martinez N & Zamore PD ( 2004 ) A protein sensor for siRNA asymmetry. Science 306, 1377 – 1380.en_US
dc.identifier.citedreferenceLeuschner PJF, Ameres SL, Kueng S & Martinez J ( 2006 ) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7, 314 – 320.en_US
dc.identifier.citedreferenceSchwarz D, Hutvagner G, Du T, Xu Z, Aronin N & Zamore P ( 2003 ) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199 – 208.en_US
dc.identifier.citedreferenceFrank F, Sonenberg N & Nagar B ( 2010 ) Structural basis for 5′‐nucleotide base‐specific recognition of guide RNA by human AGO2. Nature 465, 818 – 822.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.