Show simple item record

ER stress‐regulated translation increases tolerance to extreme hypoxia and promotes tumor growth

dc.contributor.authorBi, Meixiaen_US
dc.contributor.authorNaczki, Christineen_US
dc.contributor.authorKoritzinsky, Marianneen_US
dc.contributor.authorFels, Dianeen_US
dc.contributor.authorBlais, Jaimeen_US
dc.contributor.authorHu, Nianpingen_US
dc.contributor.authorHarding, Heatheren_US
dc.contributor.authorNovoa, Isabelleen_US
dc.contributor.authorVaria, Maheshen_US
dc.contributor.authorRaleigh, Jamesen_US
dc.contributor.authorScheuner, Donalynen_US
dc.contributor.authorKaufman, Randal Jen_US
dc.contributor.authorBell, Johnen_US
dc.contributor.authorRon, Daviden_US
dc.contributor.authorWouters, Bradly Gen_US
dc.contributor.authorKoumenis, Constantinosen_US
dc.date.accessioned2014-01-08T20:34:34Z
dc.date.available2014-01-08T20:34:34Z
dc.date.issued2005-10-05en_US
dc.identifier.citationBi, Meixia; Naczki, Christine; Koritzinsky, Marianne; Fels, Diane; Blais, Jaime; Hu, Nianping; Harding, Heather; Novoa, Isabelle; Varia, Mahesh; Raleigh, James; Scheuner, Donalyn; Kaufman, Randal J; Bell, John; Ron, David; Wouters, Bradly G; Koumenis, Constantinos (2005). "ER stress‐regulated translation increases tolerance to extreme hypoxia and promotes tumor growth." The EMBO Journal 24(19): 3470-3481. <http://hdl.handle.net/2027.42/102099>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102099
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherPERKen_US
dc.subject.otherATF4en_US
dc.subject.otherApoptosisen_US
dc.subject.otherHypoxiaen_US
dc.subject.otherEndoplasmic Reticulumen_US
dc.titleER stress‐regulated translation increases tolerance to extreme hypoxia and promotes tumor growthen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid16148948en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102099/1/emboj7600777.pdf
dc.identifier.doi10.1038/sj.emboj.7600777en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceNakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J ( 2000 ) Caspase‐12 mediates endoplasmic‐reticulum‐specific apoptosis and cytotoxicity by amyloid‐beta. Nature 403: 98 – 103en_US
dc.identifier.citedreferenceGazit G, Hung G, Chen X, Anderson WF, Lee AS ( 1999 ) Use of the glucose starvation‐inducible glucose‐regulated protein 78 promoter in suicide gene therapy of murine fibrosarcoma. Cancer Res 59: 3100 – 3106en_US
dc.identifier.citedreferenceGuzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT ( 2005 ) Mitochondrial complex III is required for hypoxia‐induced ROS production and cellular oxygen sensing. Cell Metab 1: 401 – 408en_US
dc.identifier.citedreferenceHammond EM, Dorie MJ, Giaccia AJ ( 2003 ) ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278: 12207 – 12213en_US
dc.identifier.citedreferenceHarding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D ( 2000a ) Regulated translation initiation controls stress‐induced gene expression in mammalian cells. Mol Cell 6: 1099 – 1108en_US
dc.identifier.citedreferenceHarding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D ( 2001 ) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7: 1153 – 1163en_US
dc.identifier.citedreferenceHarding HP, Zhang Y, Bertolotti A, Zeng H, Ron D ( 2000b ) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5: 897 – 904en_US
dc.identifier.citedreferenceHarding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D ( 2003 ) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11: 619 – 633en_US
dc.identifier.citedreferenceHochachka PW, Buck LT, Doll CJ, Land SC ( 1996 ) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc Natl Acad Sci USA 93: 9493 – 9498en_US
dc.identifier.citedreferenceHockel M, Vaupel P ( 2001 ) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93: 266 – 276en_US
dc.identifier.citedreferenceKaufman RJ ( 2002 ) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110: 1389 – 1398en_US
dc.identifier.citedreferenceKoong AC, Chen EY, Lee AS, Brown JM, Giaccia AJ ( 1994 ) Increased cytotoxicity of chronic hypoxic cells by molecular inhibition of GRP78 induction. Int J Radiat Oncol Biol Phys 28: 661 – 666en_US
dc.identifier.citedreferenceKoumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A, Wouters BG ( 2002 ) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22: 7405 – 7416en_US
dc.identifier.citedreferenceLang KJ, Kappel A, Goodall GJ ( 2002 ) Hypoxia‐inducible factor‐1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13: 1792 – 1801en_US
dc.identifier.citedreferenceLu PD, Jousse C, Marciniak SJ, Zhang Y, Novoa I, Scheuner D, Kaufman RJ, Ron D, Harding HP ( 2004 ) Cytoprotection by pre‐emptive conditional phosphorylation of translation initiation factor 2. EMBO J 23: 169 – 179en_US
dc.identifier.citedreferenceMa Y, Hendershot LM ( 2004 ) The role of the unfolded protein response in tumor development: friend or foe? Nat Rev Cancer 4: 966 – 977en_US
dc.identifier.citedreferenceMansfield KD, Guzy RD, Pan Y, Young RM, Cash TP, Schumacker PT, Simon MC ( 2005 ) Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF‐[alpha] activation. Cell Metab 1: 393 – 399en_US
dc.identifier.citedreferenceMaxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ ( 1997 ) Hypoxia‐inducible factor‐1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94: 8104 – 8109en_US
dc.identifier.citedreferenceMcCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ ( 2001 ) Gadd153 sensitizes cells to endoplasmic reticulum stress by down‐regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21: 1249 – 1259en_US
dc.identifier.citedreferenceRao RV, Hermel E, Castro‐Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE ( 2001 ) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276: 33869 – 33874en_US
dc.identifier.citedreferenceRatcliffe PJ, O'Rourke JF, Maxwell PH, Pugh CW ( 1998 ) Oxygen sensing, hypoxia‐inducible factor‐1 and the regulation of mammalian gene expression. J Exp Biol 201 (Part 8): 1153 – 1162en_US
dc.identifier.citedreferenceRomero‐Ramirez L, Cao H, Nelson D, Hammond E, Lee AH, Yoshida H, Mori K, Glimcher LH, Denko NC, Giaccia AJ, Le QT, Koong AC ( 2004 ) XBP1 is essential for survival under hypoxic conditions and is required for tumor growth. Cancer Res 64: 5943 – 5947en_US
dc.identifier.citedreferenceRon D ( 2002 ) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110: 1383 – 1388en_US
dc.identifier.citedreferenceRyan HE, Poloni M, McNulty W, Elson D, Gassmann M, Arbeit JM, Johnson RS ( 2000 ) Hypoxia‐inducible factor‐1alpha is a positive factor in solid tumor growth. Cancer Res 60: 4010 – 4015en_US
dc.identifier.citedreferenceScheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner‐Weir S, Kaufman RJ ( 2001 ) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7: 1165 – 1176en_US
dc.identifier.citedreferenceScorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ ( 2003 ) BAX and BAK regulation of endoplasmic reticulum Ca 2+: a control point for apoptosis. Science 300: 135 – 139en_US
dc.identifier.citedreferenceSemenza GL ( 2000 ) Surviving ischemia: adaptive responses mediated by hypoxia‐inducible factor 1. J Clin Invest 106: 809 – 812en_US
dc.identifier.citedreferenceShen J, Chen X, Hendershot L, Prywes R ( 2002 ) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3: 99 – 111en_US
dc.identifier.citedreferenceShi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC ( 1998 ) Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha‐subunit kinase, PEK, involved in translational control. Mol Cell Biol 18: 7499 – 7509en_US
dc.identifier.citedreferenceVaria MA, Calkins‐Adams DP, Rinker LH, Kennedy AS, Novotny DB, Fowler Jr WC, Raleigh JA ( 1998 ) Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 71: 270 – 277en_US
dc.identifier.citedreferenceZhang P, McGrath B, Li S, Frank A, Zambito F, Reinert J, Gannon M, Ma K, McNaughton K, Cavener DR ( 2002 ) The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22: 3864 – 3874en_US
dc.identifier.citedreferenceZinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D ( 1998 ) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12: 982 – 995en_US
dc.identifier.citedreferenceZong WX, Li C, Hatzivassiliou G, Lindsten T, Yu QC, Yuan J, Thompson CB ( 2003 ) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162: 59 – 69en_US
dc.identifier.citedreferenceAkiri G, Nahari D, Finkelstein Y, Le SY, Elroy‐Stein O, Levi BZ ( 1998 ) Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17: 227 – 236en_US
dc.identifier.citedreferenceAmeri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL ( 2004 ) Anoxic induction of ATF‐4 through HIF‐1‐independent pathways of protein stabilization in human cancer cells. Blood 103: 1876 – 1882en_US
dc.identifier.citedreferenceBertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D ( 2000 ) Dynamic interaction of BiP and ER stress transducers in the unfolded‐protein response. Nat Cell Biol 2: 326 – 332en_US
dc.identifier.citedreferenceBlais JD, Filipenko V, Bi M, Ron D, Koumenis C, Wouters BG, Bell JC ( 2004 ) Transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24: 7469 – 7482en_US
dc.identifier.citedreferenceBlouw B, Song H, Tihan T, Bosze J, Ferrara N, Gerber HP, Johnson RS, Bergers G ( 2003 ) The hypoxic response of tumors is dependent on their microenvironment. Cancer Cell 4: 133 – 146en_US
dc.identifier.citedreferenceBrewer JW, Diehl JA ( 2000 ) PERK mediates cell‐cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci USA 97: 12625 – 12630en_US
dc.identifier.citedreferenceCarmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E, Keshet E ( 1998 ) Role of HIF‐1alpha in hypoxia‐mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394: 485 – 490en_US
dc.identifier.citedreferenceCullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA ( 2003 ) Nrf2 is a direct PERK substrate and effector of PERK‐dependent cell survival. Mol Cell Biol 23: 7198 – 7209en_US
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ ( 1990 ) Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. Proc Natl Acad Sci USA 87: 7429 – 7432en_US
dc.identifier.citedreferenceFawcett TW, Martindale JL, Guyton KZ, Hai T, Holbrook NJ ( 1999 ) Complexes containing activating transcription factor (ATF)/cAMP‐responsive‐element‐binding protein (CREB) interact with the CCAAT/enhancer‐binding protein (C/EBP)‐ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339 (Part 1): 135 – 141en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.