Show simple item record

Insights into congenital stationary night blindness based on the structure of G90D rhodopsin

dc.contributor.authorSinghal, Ankitaen_US
dc.contributor.authorOstermaier, Martin Ken_US
dc.contributor.authorVishnivetskiy, Sergey Aen_US
dc.contributor.authorPanneels, Valérieen_US
dc.contributor.authorHoman, Kristoff Ten_US
dc.contributor.authorTesmer, John J Gen_US
dc.contributor.authorVeprintsev, Dmitryen_US
dc.contributor.authorDeupi, Xavieren_US
dc.contributor.authorGurevich, Vsevolod Ven_US
dc.contributor.authorSchertler, Gebhard F Xen_US
dc.contributor.authorStandfuss, Joergen_US
dc.date.accessioned2014-01-08T20:34:37Z
dc.date.available2014-08-01T19:11:40Zen_US
dc.date.issued2013-06en_US
dc.identifier.citationSinghal, Ankita; Ostermaier, Martin K; Vishnivetskiy, Sergey A; Panneels, Valérie ; Homan, Kristoff T; Tesmer, John J G; Veprintsev, Dmitry; Deupi, Xavier; Gurevich, Vsevolod V; Schertler, Gebhard F X; Standfuss, Joerg (2013). "Insights into congenital stationary night blindness based on the structure of G90D rhodopsin." EMBO reports 14(6): 520-526. <http://hdl.handle.net/2027.42/102109>en_US
dc.identifier.issn1469-221Xen_US
dc.identifier.issn1469-3178en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102109
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherG Protein‐Coupled Receptorsen_US
dc.subject.otherBiased Signallingen_US
dc.subject.otherRhodopsinen_US
dc.subject.otherCongenital Stationary Night Blindnessen_US
dc.subject.otherRetinitis Pigmentosaen_US
dc.titleInsights into congenital stationary night blindness based on the structure of G90D rhodopsinen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid23579341en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/1/embr201344.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/2/embr201344.reviewer_comments.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102109/3/embr201344-sup-0001.pdf
dc.identifier.doi10.1038/embor.2013.44en_US
dc.identifier.sourceEMBO reportsen_US
dc.identifier.citedreferenceFuchs SS, Nakazawa MM, Maw MM, Tamai MM, Oguchi YY, Gal AA ( 1995 ) A homozygous 1‐base pair deletion in the arrestin gene is a frequent cause of Oguchi disease in Japanese. Nat Genet 10: 360 – 362en_US
dc.identifier.citedreferenceDizhoor AM, Woodruff ML, Olshevskaya EV, Cilluffo MC, Cornwall MC, Sieving PA, Fain GL ( 2008 ) Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J Neurosci 28: 11662 – 11672en_US
dc.identifier.citedreferenceKrebs MP, Holden DC, Joshi P, Clark CL, Lee AH, Kaushal S ( 2010 ) Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue. J Mol Biol 395: 1063 – 1078en_US
dc.identifier.citedreferenceChoe H‐W, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP ( 2011 ) Crystal structure of metarhodopsin II. Nature 471: 651 – 655en_US
dc.identifier.citedreferenceHamm HE, Deretic D, Arendt A, Hargrave PA, Koenig B, Hofmann KP ( 1988 ) Site of G protein binding to rhodopsin mapped with synthetic peptides from the α subunit. Science 241: 832 – 835en_US
dc.identifier.citedreferenceDeupi X, Edwards P, Singhal A, Nickle B, Oprian D, Schertler G, Standfuss J ( 2012 ) Stabilized G protein binding site in the structure of constitutively active metarhodopsin‐II. Proc Natl Acad Sci USA 109: 119 – 124en_US
dc.identifier.citedreferenceGross AKA, Xie GG, Oprian DDD ( 2003 ) Slow binding of retinal to rhodopsin mutants G90D and T94D. Biochemistry 42: 2002 – 2008en_US
dc.identifier.citedreferenceStandfuss J, Xie G, Edwards PC, Burghammer M, Oprian DD, Schertler GFX ( 2007 ) Crystal structure of a thermally stable rhodopsin mutant. J Mol Biol 372: 1179 – 1188en_US
dc.identifier.citedreferenceZhukovsky EA, Oprian DD ( 1989 ) Effect of carboxylic acid side chains on the absorption maximum of visual pigments. Science 246: 928 – 930en_US
dc.identifier.citedreferenceMahalingam M, Martínez‐Mayorga K, Brown MF, Vogel R ( 2008 ) Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci USA 105: 17795 – 17800en_US
dc.identifier.citedreferenceKim J‐M, Altenbach C, Kono M, Oprian DD, Hubbell WL, Khorana HG ( 2004 ) Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge. Proc Natl Acad Sci USA 101: 12508 – 12513en_US
dc.identifier.citedreferencePark JH, Scheerer P, Hofmann KP, Choe H‐W, Ernst OP ( 2008 ) Crystal structure of the ligand‐free G‐protein‐coupled receptor opsin. Nature 454: 183 – 187en_US
dc.identifier.citedreferencePiechnick R, Ritter E, Hildebrand PW, Ernst OP, Scheerer P, Hofmann KP, Heck M ( 2012 ) Effect of channel mutations on the uptake and release of the retinal ligand in opsin. Proc Natl Acad Sci USA 109: 5247 – 5252en_US
dc.identifier.citedreferenceLi J, Edwards PC, Burghammer M, Villa C, Schertler GFX ( 2004 ) Structure of bovine rhodopsin in a trigonal crystal form. J Mol Biol 343: 1409 – 1438en_US
dc.identifier.citedreferenceMcAlear SD, Kraft TW, Gross AK ( 2010 ) 1 rhodopsin mutations in congenital night blindness. Adv Exp Med Biol 664: 263 – 272en_US
dc.identifier.citedreferenceGross AK, Rao VR, Oprian DD ( 2003 ) Characterization of rhodopsin congenital night blindness mutant T94I. Biochemistry 42: 2009 – 2015en_US
dc.identifier.citedreferenceYamamoto SS, Sippel KCK, Berson ELE, Dryja TPT ( 1997 ) Defects in the rhodopsin kinase gene in the Oguchi form of stationary night blindness. Nat Genet 15: 175 – 178en_US
dc.identifier.citedreferenceRim JJ, Oprian DDD ( 1995 ) Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin. Biochemistry 34: 11938 – 11945en_US
dc.identifier.citedreferenceHan M, Smith S, Sakmar T ( 1998 ) Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6. Biochemistry 37: 8253 – 8261en_US
dc.identifier.citedreferenceBayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV ( 2010 ) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin‐1 binding. J Biol Chem 286: 1420 – 1428en_US
dc.identifier.citedreferenceWarne T, Edwards PC, Leslie AGW, Tate CG ( 2012 ) Crystal structures of a stabilized β(1)‐adrenoceptor bound to the biased agonists Bucindolol and Carvedilol. Structure 20: 841 – 849en_US
dc.identifier.citedreferenceLiu JJ, Horst R, Katritch V, Stevens RC, Wüthrich K ( 2012 ) Biased signaling pathways in β2‐adrenergic receptor characterized by 19F‐NMR. Science 335: 1106 – 1110en_US
dc.identifier.citedreferenceKirchberg K, Kim T‐Y, Möller M, Skegro D, Dasara Raju G, Granzin J, Büldt G, Schlesinger R, Alexiev U ( 2011 ) Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc Natl Acad Sci USA 108: 18690 – 18695en_US
dc.identifier.citedreferenceKono MM, Goletz PWP, Crouch RKR ( 2008 ) 11‐cis‐ and all‐trans‐retinols can activate rod opsin: rational design of the visual cycle. Biochemistry 47: 7567 – 7571en_US
dc.identifier.citedreferenceKefalov VJ, Crouch RK, Cornwall MC ( 2001 ) Role of noncovalent binding of 11‐cis‐retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29: 749 – 755en_US
dc.identifier.citedreferenceStandfuss J, Edwards PC, D'Antona A, Fransen M, Xie G, Oprian DD, Schertler GF ( 2011 ) The structural basis of agonist‐induced activation in constitutively active rhodopsin. Nature 471: 656 – 660en_US
dc.identifier.citedreferenceLiu J, Liu MY, Nguyen JB, Bhagat A, Mooney V, Yan ECY ( 2011 ) Thermal properties of rhodopsin: insight into the molecular mechanism of dim‐light vision. J Biol Chem 286: 27622 – 27629en_US
dc.identifier.citedreferenceKim JMJ, Altenbach CC, Thurmond RLR, Khorana HGH, Hubbell WLW ( 1997 ) Structure and function in rhodopsin: rhodopsin mutants with a neutral amino acid at E134 have a partially activated conformation in the dark state. Proc Natl Acad Sci USA 94: 14273 – 14278en_US
dc.identifier.citedreferenceNeidhardt J, Barthelmes D, Farahmand F, Fleischhauer JC, Berger W ( 2006 ) Different amino acid substitutions at the same position in rhodopsin lead to distinct phenotypes. Invest Ophthalmol Vis Sci 47: 1630 – 1635en_US
dc.identifier.citedreferenceRao VR, Cohen GB, Oprian DD ( 1994 ) Rhodopsin mutation G90D and a molecular mechanism for congenital night blindness. Nature 367: 639 – 642en_US
dc.identifier.citedreferenceZvyaga TA, Fahmy K, Siebert F, Sakmar TP ( 1996 ) Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier‐transform infrared spectroscopy study. Biochemistry 35: 7536 – 7545en_US
dc.identifier.citedreferenceToledo D, Ramon E, Aguilà M, Cordomí A, Pérez JJ, Mendes HF, Cheetham ME, Garriga P ( 2011 ) Molecular mechanisms of disease for mutations at Gly‐90 in rhodopsin. J Biol Chem 286: 39993 – 40001en_US
dc.identifier.citedreferenceSieving PA, Richards JE, Naarendorp F, Bingham EL, Scott K, Alpern M ( 1995 ) Dark‐light: model for nightblindness from the human rhodopsin Gly‐90‐‐>Asp mutation. Proc Natl Acad Sci USA 92: 880 – 884en_US
dc.identifier.citedreferenceSieving PA, Fowler ML, Bush RA, Machida S, Calvert PD, Green DG, Makino CL, McHenry CL ( 2001 ) Constitutive ‘light’ adaptation in rods from G90D rhodopsin: a mechanism for human congenital nightblindness without rod cell loss. J Neurosci 21: 5449 – 5460en_US
dc.identifier.citedreferenceJin S, Cornwall MC, Oprian DD ( 2003 ) Opsin activation as a cause of congenital night blindness. Nat. Neurosci 6: 731 – 735en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.