A novel role for XIAP in copper homeostasis through regulation of MURR1
dc.contributor.author | Burstein, Ezra | en_US |
dc.contributor.author | Ganesh, Lakshmanan | en_US |
dc.contributor.author | Dick, Robert D | en_US |
dc.contributor.author | van De Sluis, Bart | en_US |
dc.contributor.author | Wilkinson, John C | en_US |
dc.contributor.author | Klomp, Leo WJ | en_US |
dc.contributor.author | Wijmenga, Cisca | en_US |
dc.contributor.author | Brewer, George J | en_US |
dc.contributor.author | Nabel, Gary J | en_US |
dc.contributor.author | Duckett, Colin S | en_US |
dc.date.accessioned | 2014-01-08T20:34:44Z | |
dc.date.available | 2014-01-08T20:34:44Z | |
dc.date.issued | 2004-01-14 | en_US |
dc.identifier.citation | Burstein, Ezra; Ganesh, Lakshmanan; Dick, Robert D; van De Sluis, Bart; Wilkinson, John C; Klomp, Leo WJ; Wijmenga, Cisca; Brewer, George J; Nabel, Gary J; Duckett, Colin S (2004). "A novel role for XIAP in copper homeostasis through regulation of MURR1." The EMBO Journal 23(1): 244-254. <http://hdl.handle.net/2027.42/102131> | en_US |
dc.identifier.issn | 0261-4189 | en_US |
dc.identifier.issn | 1460-2075 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/102131 | |
dc.publisher | John Wiley & Sons, Ltd | en_US |
dc.subject.other | MURR1 | en_US |
dc.subject.other | Ubiquitin | en_US |
dc.subject.other | XIAP | en_US |
dc.subject.other | Copper | en_US |
dc.title | A novel role for XIAP in copper homeostasis through regulation of MURR1 | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 14685266 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/102131/1/emboj7600031.pdf | |
dc.identifier.doi | 10.1038/sj.emboj.7600031 | en_US |
dc.identifier.source | The EMBO Journal | en_US |
dc.identifier.citedreference | Silke J, Hawkins CJ, Ekert PG, Chew J, Day CL, Pakusch M, Verhagen AM, Vaux DL ( 2002 ) The anti‐apoptotic activity of XIAP is retained upon mutation of both the caspase 3‐ and caspase 9‐interacting sites. J Cell Biol 157: 115 – 124 | en_US |
dc.identifier.citedreference | Martindale JL, Holbrook NJ ( 2002 ) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1 – 15 | en_US |
dc.identifier.citedreference | Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J ( 2001 ) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper‐like motif. J Biol Chem 277: 439 – 444 | en_US |
dc.identifier.citedreference | Mercer JF ( 2001 ) The molecular basis of copper‐transport diseases. Trends Mol Med 7: 64 – 69 | en_US |
dc.identifier.citedreference | Mercurio F, Manning AM ( 1999 ) NF‐kappaB as a primary regulator of the stress response. Oncogene 18: 6163 – 6171 | en_US |
dc.identifier.citedreference | Puig S, Thiele DJ ( 2002 ) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6: 171 – 180 | en_US |
dc.identifier.citedreference | Richter BWM, Mir SS, Eiben LJ, Lewis J, Reffey SB, Frattini A, Tian L, Frank S, Youle RJ, Nelson DL, Notarangelo LD, Vezzoni P, Fearnhead HO, Duckett CS ( 2001 ) Molecular cloning of ILP‐2, a novel member of the inhibitor of apoptosis protein (IAP) family. Mol Cell Biol 21: 4292 – 4301 | en_US |
dc.identifier.citedreference | Riedl SJ, Renatus M, Schwarzenbacher R, Zhou Q, Sun C, Fesik SW, Liddington RC, Salvesen GS ( 2001 ) Structural basis for the inhibition of caspase‐3 by XIAP. Cell 104: 791 – 800 | en_US |
dc.identifier.citedreference | Rothe M, Pan M‐G, Henzel WJ, Ayres TM, Goeddel DV ( 1995 ) The TNFR2–TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83: 1243 – 1252 | en_US |
dc.identifier.citedreference | Sanna MG, da Silva Correia J, Ducrey O, Lee J, Nomoto K, Schrantz N, Deveraux QL, Ulevitch RJ ( 2002 ) IAP suppression of apoptosis involves distinct mechanisms: the TAK1/JNK1 signaling cascade and caspase inhibition. Mol Cell Biol 22: 1754 – 1766 | en_US |
dc.identifier.citedreference | Sanna MG, Duckett CS, Richter BWM, Thompson CB, Ulevitch RJ ( 1998 ) Selective activation of JNK1 is necessary for the anti‐apoptotic activity of hILP. Proc Natl Acad Sci USA 95: 6015 – 6020 | en_US |
dc.identifier.citedreference | Shi Y ( 2002 ) A conserved tetrapeptide motif: potentiating apoptosis through IAP‐binding. Cell Death Differ 9: 93 – 95 | en_US |
dc.identifier.citedreference | Srinivasula SM, Gupta S, Datta P, Zhang Z, Hegde R, Cheong N, Fernandes‐Alnemri T, Alnemri ES ( 2003 ) Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem 278: 31469 – 31472 | en_US |
dc.identifier.citedreference | Srinivasula SM, Hegde R, Saleh A, Datta P, Shiozaki E, Chai J, Lee RA, Robbins PD, Fernandes‐Alnemri T, Shi Y, Alnemri ES ( 2001 ) A conserved XIAP‐interaction motif in caspase‐9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410: 112 – 116 | en_US |
dc.identifier.citedreference | Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R ( 2001a ) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8: 613 – 621 | en_US |
dc.identifier.citedreference | Suzuki Y, Nakabayashi Y, Takahashi R ( 2001b ) Ubiquitin‐protein ligase activity of X‐linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase‐3 and enhances its anti‐apoptotic effect in Fas‐induced cell death. Proc Natl Acad Sci USA 98: 8662 – 8667 | en_US |
dc.identifier.citedreference | Tao TY, Liu F, Klomp L, Wijmenga C, Gitlin JD ( 2003 ) The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein. J Biol Chem 278: 41593 – 41596 | en_US |
dc.identifier.citedreference | Thrower JS, Hoffman L, Rechsteiner M, Pickart CM ( 2000 ) Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94 – 102 | en_US |
dc.identifier.citedreference | Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH ( 2000 ) Survivin and the inner centromere protein INCENP show similar cell‐cycle localization and gene knockout phenotype. Curr Biol 10: 1319 – 1328 | en_US |
dc.identifier.citedreference | van De Sluis B, Rothuizen J, Pearson PL, van Oost BA, Wijmenga C ( 2002 ) Identification of a new copper metabolism gene by positional cloning in a purebred dog population. Hum Mol Genet 11: 165 – 173 | en_US |
dc.identifier.citedreference | Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL ( 2000 ) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43 – 53 | en_US |
dc.identifier.citedreference | Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y ( 2000 ) Structural basis of IAP recognition by Smac/DIABLO. Nature 408: 1008 – 1012 | en_US |
dc.identifier.citedreference | Yamaguchi K, Nagai S, Ninomiya‐Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K ( 1999 ) XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1–TAK1 in the BMP signaling pathway. EMBO J 18: 179 – 187 | en_US |
dc.identifier.citedreference | Yang QH, Church‐Hajduk R, Ren J, Newton ML, Du C ( 2003 ) Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 17: 1487 – 1496 | en_US |
dc.identifier.citedreference | Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD ( 2000 ) Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288: 874 – 877 | en_US |
dc.identifier.citedreference | Yu H, Kopito RR ( 1999 ) The role of multiubiquitination in dislocation and degradation of the α subunit of the T cell antigen receptor. J Biol Chem 274: 36852 – 36858 | en_US |
dc.identifier.citedreference | Aguilar RC, Wendland B ( 2003 ) Ubiquitin: not just for proteasomes anymore. Curr Opin Cell Biol 15: 184 – 190 | en_US |
dc.identifier.citedreference | Birkey Reffey S, Wurthner JU, Parks WT, Roberts AB, Duckett CS ( 2001 ) X‐linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor‐β signaling. J Biol Chem 276: 26542 – 26549 | en_US |
dc.identifier.citedreference | Bratton SB, Lewis J, Butterworth M, Duckett CS, Cohen GM ( 2002 ) XIAP inhibition of caspase‐3 preserves its association with the Apaf‐1 apoptosome and prevents CD95‐ and Bax‐induced apoptosis. Cell Death Differ 9: 881 – 892 | en_US |
dc.identifier.citedreference | Chai J, Shiozaki E, Srinivasula SM, Wu Q, Dataa P, Alnemri ES, Shi Y ( 2001 ) Structural basis of caspase‐7 inhibition by XIAP. Cell 104: 769 – 780 | en_US |
dc.identifier.citedreference | Crook NE, Clem RJ, Miller LK ( 1993 ) An apoptosis‐inhibiting baculovirus gene with a zinc finger‐like motif. J Virol 67: 2168 – 2174 | en_US |
dc.identifier.citedreference | Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ ( 2000 ) Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin‐conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351 – 361 | en_US |
dc.identifier.citedreference | Devereaux QL, Takahashi R, Salvesen GS, Reed JC ( 1997 ) X‐linked IAP is a direct inhibitor of cell‐death proteases. Nature 388: 300 – 304 | en_US |
dc.identifier.citedreference | Du C, Fang M, Li Y, Li L, Wang X ( 2000 ) Smac, a mitochondrial protein that promotes cytochrome c‐dependent caspase activation by eliminating IAP inhibition. Cell 102: 33 – 42 | en_US |
dc.identifier.citedreference | Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB ( 1997 ) Induction of nuclear factor κB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 17: 1535 – 1542 | en_US |
dc.identifier.citedreference | Duckett CS, Li F, Wang Y, Tomaselli KJ, Thompson CB, Armstrong RC ( 1998 ) Human IAP‐like protein regulates programmed cell death downstream of Bcl‐x L and cytochrome c. Mol Cell Biol 18: 608 – 615 | en_US |
dc.identifier.citedreference | Fields S, Song O ( 1989 ) A novel genetic system to detect protein–protein interactions. Nature 340: 245 – 246 | en_US |
dc.identifier.citedreference | Harlin H, Reffey SB, Duckett CS, Lindsten T, Thompson CB ( 2001 ) Characterization of XIAP‐deficient mice. Mol Cell Biol 21: 3604 – 3608 | en_US |
dc.identifier.citedreference | Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, DuBois G, Lazebnik Y, Zervos AS, Fernandes‐Alnemri T, Alnemri ES ( 2001 ) Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts IAP–caspase interaction. J Biol Chem 277: 432 – 438 | en_US |
dc.identifier.citedreference | Hofer‐Warbinek R, Schmid JA, Stehlik C, Binder BR, Lipp J, de Martin R ( 2000 ) Activation of NF‐κB by XIAP, the X chromosome‐linked inhibitor of apoptosis, in endothelial cells involves TAK1. J Biol Chem 275: 22064 – 22068 | en_US |
dc.identifier.citedreference | Holcik M, Korneluk RG ( 2001 ) XIAP, the guardian angel. Nat Rev Mol Cell Biol 2: 550 – 556 | en_US |
dc.identifier.citedreference | Holcik M, Lefebvre C, Yeh C, Chow T, Korneluk RG ( 1999 ) A new internal‐ribosome‐entry‐site motif potentiates XIAP‐mediated cytoprotection. Nat Cell Biol 1: 190 – 192 | en_US |
dc.identifier.citedreference | Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H ( 2001 ) Structural basis of caspase inhibition by XIAP. Differential roles of the linker versus the BIR domain. Cell 104: 781 – 790 | en_US |
dc.identifier.citedreference | Klomp AEM, van de Sluis B, Klomp LWJ, Wijmenga C ( 2003 ) The ubiquitously expressed MURR1 protein is absent in canine copper toxicosis. J Hepatol 39: 703 – 709 | en_US |
dc.identifier.citedreference | Levkau B, Garton KJ, Ferri N, Kloke K, Nofer JR, Baba HA, Raines EW, Breithardt G ( 2001 ) XIAP induces cell‐cycle arrest and activates nuclear factor‐κB: new survival pathways disabled by caspase‐mediated cleavage during apoptosis of human endothelial cells. Circ Res 88: 282 – 290 | en_US |
dc.identifier.citedreference | Li X, Yang Y, Ashwell JD ( 2002 ) TNF‐RII and c‐IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416: 345 – 347 | en_US |
dc.identifier.citedreference | Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW ( 2000 ) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408: 1004 – 1008 | en_US |
dc.identifier.citedreference | MacFarlane M, Merrison W, Bratton SB, Cohen GM ( 2002 ) Proteasome‐mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277: 36611 – 36616 | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.