Show simple item record

Birthdating of myenteric neuron subtypes in the small intestine of the mouse

dc.contributor.authorBergner, Annette J.en_US
dc.contributor.authorStamp, Lincon A.en_US
dc.contributor.authorGonsalvez, David G.en_US
dc.contributor.authorAllison, Margaret B.en_US
dc.contributor.authorOlson, David P.en_US
dc.contributor.authorMyers, Martin G.en_US
dc.contributor.authorAnderson, Colin R.en_US
dc.contributor.authorYoung, Heather M.en_US
dc.date.accessioned2014-01-08T20:34:47Z
dc.date.available2015-04-01T19:59:08Zen_US
dc.date.issued2014-02-15en_US
dc.identifier.citationBergner, Annette J.; Stamp, Lincon A.; Gonsalvez, David G.; Allison, Margaret B.; Olson, David P.; Myers, Martin G.; Anderson, Colin R.; Young, Heather M. (2014). "Birthdating of myenteric neuron subtypes in the small intestine of the mouse." Journal of Comparative Neurology 522(3): 514-527.en_US
dc.identifier.issn0021-9967en_US
dc.identifier.issn1096-9861en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102151
dc.description.abstractThere are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5‐ethynynl‐2′‐deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament‐M neurons, calcitonin gene‐related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5–E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre‐lox‐based genetic fate‐mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype. J. Comp. Neurol. 522:514–527, 2014. © 2013 Wiley Periodicals, Inc. To examine when different myenteric neuron subtypes in the mouse intestine are born, EDU labeling was combined with immunohistochemistry. Neuron subtypes were born at different, but overlapping times with serotonin interneurons first, then intrinsic sensory neurons, inhibitory motor neurons and excitatory motor neurons last, with peak birthdate around birth.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCell Cycle Exiten_US
dc.subject.otherNeural Cresten_US
dc.subject.otherNOS1 Neuronen_US
dc.subject.otherEnteric Nervous Systemen_US
dc.titleBirthdating of myenteric neuron subtypes in the small intestine of the mouseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102151/1/cne23423.pdf
dc.identifier.doi10.1002/cne.23423en_US
dc.identifier.sourceJournal of Comparative Neurologyen_US
dc.identifier.citedreferenceRothman TP, Nilaver G, Gershon MD. 1984. Colonization of the developing murine enteric nervous system and subsequent phenotypic expression by the precursors of peptidergic neruons. J Comp Neurol 225: 13 – 23.en_US
dc.identifier.citedreferenceNurgali K, Stebbing MJ, Furness JB. 2004. Correlation of electrophysiological and morphological characteristics of enteric neurons in the mouse colon. J Comp Neurol 468: 112 – 124.en_US
dc.identifier.citedreferenceObermayr F, Hotta R, Enomoto H, Young HM. 2013a. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 10: 43 – 57.en_US
dc.identifier.citedreferenceObermayr F, Stamp LA, Anderson CR, Young HM. 2013b. Genetic fate‐mapping of tyrosine hydroxylase‐expressing cells in the enteric nervous system. Neurogastroenterol Motil 25: e283 – e291.en_US
dc.identifier.citedreferencePham TD, Gershon MD, Rothman TP. 1991. Time of origin of neurons in the murine enteric nervous system: sequence in relation to phenotype. J Comp Neurol 314: 789 – 798.en_US
dc.identifier.citedreferenceQu ZD, Thacker M, Castelucci P, Bagyanszki M, Epstein ML, Furness JB. 2008. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res 334: 147 – 161.en_US
dc.identifier.citedreferenceRothman TP, Gershon MD. 1982. Phenotypic expression in the developing murine enteric nervous system. J Neurosci 2: 381 – 393.en_US
dc.identifier.citedreferenceSang Q, Young HM. 1996. Chemical coding of neurons in the myenteric plexus and external muscle of the small and large intestine of the mouse. Cell Tissue Res 284: 39 – 53.en_US
dc.identifier.citedreferenceSang Q, Young HM. 1998. The identification and chemical coding of cholinergic neurons in the small and large intestine of the mouse. Anat Rec 251: 185 – 199.en_US
dc.identifier.citedreferenceSang Q, Williamson S, Young HM. 1997. Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. J Anat 190: 209 – 222.en_US
dc.identifier.citedreferenceSasselli V, Pachnis V, Burns AJ. 2012. The enteric nervous system. Dev Biol 366: 64 – 73.en_US
dc.identifier.citedreferenceTakeoka A, Kubasak MD, Zhong H, Roy RR, Phelps PE. 2009. Serotonergic innervation of the caudal spinal stump in rats after complete spinal transection: effect of olfactory ensheathing glia. J Comp Neurol 515: 664 – 676.en_US
dc.identifier.citedreferenceTurner KN, Schachner M, Anderson RB. 2009. Cell adhesion molecule L1 affects the rate of differentiation of enteric neurons in the developing gut. Dev Dyn 238: 708 – 715.en_US
dc.identifier.citedreferenceUyttebroek L, Shepherd IT, Harrisson F, Hubens G, Blust R, Timmermans JP, Van Nassauw L. 2010. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol 518: 4419 – 4438.en_US
dc.identifier.citedreferenceWang H, Hughes I, Planer W, Parsadanian A, Grider JR, Vohra BP, Keller‐Peck C, Heuckeroth RO. 2010. The timing and location of glial cell line‐derived neurotrophic factor expression determine enteric nervous system structure and function. J Neurosci 30: 1523 – 1538.en_US
dc.identifier.citedreferenceWard SM, Shuttleworth CW, Kenyon JL. 1994. Dorsal root ganglion neurons of embryonic chicks contain nitric oxide synthase and respond to nitric oxide. Brain Res 648: 249 – 258.en_US
dc.identifier.citedreferenceWard SM, Harney SC, Bayguinov JR, McLaren GJ, Sanders KM. 1997. Development of electrical rhythmicity in the murine gastrointestinal tract is specifically encoded in the tunica muscularis. J Physiol (Lond) 505: 241 – 258.en_US
dc.identifier.citedreferenceWetts R, Vaughn JE. 1993. Transient expression of beta‐NADPH diaphorase in developing rat dorsal root ganglia neurons. Brain Res Dev Brain Res 76: 278 – 282.en_US
dc.identifier.citedreferenceYan H, Keast JR. 2008. Neurturin regulates postnatal differentiation of parasympathetic pelvic ganglion neurons, initial axonal projections, and maintenance of terminal fields in male urogenital organs. J Comp Neurol 507: 1169 – 1183.en_US
dc.identifier.citedreferenceYasuhara O, Aimi Y, Matsuo A, Kimura H. 2008. Distribution of a splice variant of choline acetyltransferase in the trigeminal ganglion and brainstem of the rat: comparison with calcitonin gene‐related peptide and substance P. J Comp Neurol 509: 436 – 448.en_US
dc.identifier.citedreferenceYoung HM, Ciampoli D. 1998. Transient expression of neuronal nitric oxide synthase by neurons of the submucous plexus of the mouse small intestine. Cell Tissue Res 291: 395 – 401.en_US
dc.identifier.citedreferenceYoung HM, Torihashi S, Ciampoli D, Sanders KM. 1998. Identification of neurons that express stem cell factor in the mouse small intestine. Gastroenterology 115: 898 – 908.en_US
dc.identifier.citedreferenceYoung HM, Ciampoli D, Hsuan J, Canty AJ. 1999. Expression of ret‐, p75(NTR)‐, Phox2a‐, Phox2b‐, and tyrosine hydroxylase‐immunoreactivity by undifferentiated neural crest‐derived cells and different classes of enteric neurons in the embryonic mouse gut. Dev Dyn 216: 137 – 152.en_US
dc.identifier.citedreferenceYoung HM, Turner KN, Bergner AJ. 2005. The location and phenotype of proliferating neural‐crest‐derived cells in the developing mouse gut. Cell Tissue Res 320: 1 – 9.en_US
dc.identifier.citedreferenceZagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB. 2009. A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64: 645 – 662.en_US
dc.identifier.citedreferenceAllison WT, Barthel LK, Skebo KM, Takechi M, Kawamura S, Raymond PA. 2010. Ontogeny of cone photoreceptor mosaics in zebrafish. J Comp Neurol 518: 4182 – 4195.en_US
dc.identifier.citedreferenceBaetge G, Gershon MD. 1989. Transient catecholaminergic (TC) cells in the vagus nerves and bowel of fetal mice: relationship to the development of enteric neurons. Dev Biol 132: 189 – 211.en_US
dc.identifier.citedreferenceBaetge G, Pintar JE, Gershon MD. 1990a. Transiently catecholaminergic (TC) cells in the bowel of the fetal rat: precursors of noncatecholaminergic enteric neurons. Dev Biol 141: 353 – 380.en_US
dc.identifier.citedreferenceBaetge G, Schneider KA, Gershon MD. 1990b. Development and persistence of catecholaminergic neurons in cultured explants of fetal murine vagus nerves and bowel. Development 110: 689 – 701.en_US
dc.identifier.citedreferenceBartel DL. 2012. Glial responses after chorda tympani nerve injury. J Comp Neurol 520: 2712 – 2729.en_US
dc.identifier.citedreferenceBranchek TA, Gershon MD. 1989. Time course of expression of neuropeptide Y, calcitonin gene‐related peptide, and NADPH diaphorase activity in neurons of the developing murine bowel and the appearance of 5‐hydroxytryptamine in mucosal enterochromaffin cells. J Comp Neurol 285: 262 – 273.en_US
dc.identifier.citedreferenceBredt DS, Snyder SH. 1994. Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium. Neuron 13: 301 – 313.en_US
dc.identifier.citedreferenceBrookes SJ. 2001. Classes of enteric nerve cells in the guinea‐pig small intestine. Anat Rec 262: 58 – 70.en_US
dc.identifier.citedreferenceCallahan T, Young HM, Anderson RB, Enomoto H, Anderson CR. 2008. Development of satellite glia in mouse sympathetic ganglia: GDNF and GFR alpha 1 are not essential. Glia 56: 1428 – 1437.en_US
dc.identifier.citedreferenceChalazonitis A, Pham TD, Li Z, Roman D, Guha U, Gomes W, Kan L, Kessler JA, Gershon MD. 2008. Bone morphogenetic protein regulation of enteric neuronal phenotypic diversity: relationship to timing of cell cycle exit. J Comp Neurol 509: 474 – 492.en_US
dc.identifier.citedreferenceChen JJ, Li Z, Pan H, Murphy DL, Tamir H, Koepsell H, Gershon MD. 2001. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high‐affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J Neurosci 21: 6348 – 6361.en_US
dc.identifier.citedreferenceDisney AA, Aoki C. 2008. Muscarinic acetylcholine receptors in macaque V1 are most frequently expressed by parvalbumin‐immunoreactive neurons. J Comp Neurol 507: 1748 – 1762.en_US
dc.identifier.citedreferenceErickson CS, Zaitoun I, Haberman KM, Gosain A, Druckenbrod NR, Epstein ML. 2012. Sacral neural crest‐derived cells enter the aganglionic colon of Ednrb‐/‐ mice along extrinsic nerve fibers. J Comp Neurol 520: 620 – 632.en_US
dc.identifier.citedreferenceFoong JP, Nguyen TV, Furness JB, Bornstein JC, Young HM. 2012. Myenteric neurons of the mouse small intestine undergo significant electrophysiological and morphological changes during postnatal development. J Physiol 590: 2375 – 2390.en_US
dc.identifier.citedreferenceFurness JB. 2012. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol 9: 286 – 294.en_US
dc.identifier.citedreferenceGershon MD. 2010. Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci 33: 446 – 456.en_US
dc.identifier.citedreferenceGershon MD, Thompson EB. 1973. The maturation of neuromuscular function in a multiply innervated structure: development of the longitudinal smooth muscle of the foetal mammalian gut and its cholinergic excitatory, adrenergic inhibitory, and non‐adrenergic inhibitory innervation. J Physiol (Lond) 234: 257 – 277.en_US
dc.identifier.citedreferenceGershon MD, Rothman TP, Joh TH, Teitelman GN. 1984. Transient and differential expression of aspects of the catecholaminergic phenotype during development of the fetal bowel of rats and mice. J Neurosci 4: 2269 – 2280.en_US
dc.identifier.citedreferenceGnanamanickam GJ, Llewellyn‐Smith IJ. 2011. Innervation of the rat uterus at estrus: a study in full‐thickness, immunoperoxidase‐stained whole‐mount preparations. J Comp Neurol 519: 621 – 643.en_US
dc.identifier.citedreferenceGonsalvez DG, Cane KN, Landman KA, Enomoto H, Young HM, Anderson CR. 2013. Proliferation and cell cycle dynamics in the developing stellate ganglion. J Neurosci 33: 5969 – 5979.en_US
dc.identifier.citedreferenceGrider JR. 2003. Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J Pharmacol Exp Ther 307: 460 – 467.en_US
dc.identifier.citedreferenceHao MM, Young HM. 2009. Development of enteric neuron diversity. J Cell Mol Med 13: 1193 – 1210.en_US
dc.identifier.citedreferenceHao MM, Anderson RB, Kobayashi K, Whitington PM, Young HM. 2009. The migratory behavior of immature enteric neurons. Dev Neurobiol 69: 22 – 35.en_US
dc.identifier.citedreferenceHao MM, Moore RE, Roberts RR, Nguyen T, Furness JB, Anderson RB, Young HM. 2010. The role of neural activity in the migration and differentiation of enteric neuron precursors. Neurogastroenterol Motil 22: e127 – 137.en_US
dc.identifier.citedreferenceHao MM, Bornstein JC, Vanden Berghe P, Lomax AE, Young HM, Foong JPP. 2013a. The emergence of neural activity and its role in the development of the enteric nervous system. Dev Biol [Epub ahead of print].en_US
dc.identifier.citedreferenceHao MM, Bornstein JC, Young HM. 2013b. Development of myenteric cholinergic neurons in ChATCre;R26R‐YFP mice. J Comp Neurol [Epub ahead of print].en_US
dc.identifier.citedreferenceHarris J, Ayyub C, Shaw G. 1991. A molecular dissection of the carboxyterminal tails of the major neurofilament subunits NF‐M and NF‐H. J Neurosci Res 30: 47 – 62.en_US
dc.identifier.citedreferenceHerbison AE, Simonian SX, Norris PJ, Emson PC. 1996. Relationship of neuronal nitric oxide synthase immunoreactivity to GnRH neurons in the ovariectomized and intact female rat. J Neuroendocrinol 8: 73 – 82.en_US
dc.identifier.citedreferenceJoseph NM, He S, Quintana E, Kim YG, Nunez G, Morrison SJ. 2011. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J Clin Invest 121: 3398 – 3411.en_US
dc.identifier.citedreferenceJudas M, Sestan N, Kostovic I. 1999. Nitrinergic neurons in the developing and adult human telencephalon: transient and permanent patterns of expression in comparison to other mammals. Microsc Res Tech 45: 401 – 419.en_US
dc.identifier.citedreferenceKalous A, Osborne PB, Keast JR. 2009. Spinal cord compression injury in adult rats initiates changes in dorsal horn remodeling that may correlate with development of neuropathic pain. J Comp Neurol 513: 668 – 684.en_US
dc.identifier.citedreferenceLake JI, Heuckeroth RO. 2013. Enteric nervous system development: migration, differentiation, and disease. Am J Physiol Gastrointest Liver Physiol [Epub ahead of print].en_US
dc.identifier.citedreferenceLaranjeira C, Pachnis V. 2009. Enteric nervous system development: Recent progress and future challenges. Auton Neurosci 151: 61 – 69.en_US
dc.identifier.citedreferenceLaranjeira C, Sandgren K, Kessaris N, Richardson W, Potocnik A, Vanden Berghe P, Pachnis V. 2011. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J Clin Invest 121: 3412 – 3424.en_US
dc.identifier.citedreferenceLeone DP, Srinivasan K, Chen B, Alcamo E, McConnell SK. 2008. The determination of projection neuron identity in the developing cerebral cortex. Curr Opin Neurobiol 18: 28 – 35.en_US
dc.identifier.citedreferenceLeshan RL, Greenwald‐Yarnell M, Patterson CM, Gonzalez IE, Myers MG Jr. 2012. Leptin action through hypothalamic nitric oxide synthase‐1‐expressing neurons controls energy balance. Nat Med 18: 820 – 823.en_US
dc.identifier.citedreferenceLi ZS, Pham TD, Tamir H, Chen JJ, Gershon MD. 2004. Enteric dopaminergic neurons: definition, developmental lineage, and effects of extrinsic denervation. J Neurosci 24: 1330 – 1339.en_US
dc.identifier.citedreferenceLi Z, Caron MG, Blakely RD, Margolis KG, Gershon MD. 2010. Dependence of serotonergic and other nonadrenergic enteric neurons on norepinephrine transporter expression. J Neurosci 30: 16730 – 16740.en_US
dc.identifier.citedreferenceLi Z, Chalazonitis A, Huang YY, Mann JJ, Margolis KG, Yang QM, Kim DO, Cote F, Mallet J, Gershon MD. 2011. Essential roles of enteric neuronal serotonin in gastrointestinal motility and the development/survival of enteric dopaminergic neurons. J Neurosci 31: 8998 – 9009.en_US
dc.identifier.citedreferenceLiu MT, Kuan YH, Wang J, Hen R, Gershon MD. 2009. 5‐HT4 receptor‐mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 29: 9683 – 9699.en_US
dc.identifier.citedreferenceMazzuoli G, Schemann M. 2012. Mechanosensitive enteric neurons in the myenteric plexus of the mouse intestine. PLoS One 7: e39887.en_US
dc.identifier.citedreferenceMongardi Fantaguzzi C, Thacker M, Chiocchetti R, Furness JB. 2009. Identification of neuron types in the submucosal ganglia of the mouse ileum. Cell Tissue Res 336: 179 – 189.en_US
dc.identifier.citedreferenceNeal KB, Parry LJ, Bornstein JC. 2009. Strain‐specific genetics, anatomy and function of enteric neural serotonergic pathways in inbred mice. J Physiol 587: 567 – 586.en_US
dc.identifier.citedreferenceNorris PJ, Charles IG, Scorer CA, Emson PC. 1995. Studies on the localization and expression of nitric oxide synthase using histochemical techniques. Histochem J 27: 745 – 756.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.