Show simple item record

Phosphatidylinositol 3,5‐bisphosphate: Low abundance, high significance

dc.contributor.authorMcCartney, Amber J.en_US
dc.contributor.authorZhang, Yanlingen_US
dc.contributor.authorWeisman, Lois S.en_US
dc.date.accessioned2014-01-08T20:34:48Z
dc.date.available2015-03-02T14:35:34Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationMcCartney, Amber J.; Zhang, Yanling; Weisman, Lois S. (2014). "Phosphatidylinositol 3,5‐bisphosphate: Low abundance, high significance." BioEssays 36(1): 52-64.en_US
dc.identifier.issn0265-9247en_US
dc.identifier.issn1521-1878en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102155
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPhosphoinositide Lipiden_US
dc.subject.otherPIK Fyveen_US
dc.subject.otherVac7en_US
dc.subject.otherVac14en_US
dc.subject.otherFab1en_US
dc.subject.otherPhosphatidylinositol 3,5‐Bisphosphateen_US
dc.subject.otherFig4en_US
dc.titlePhosphatidylinositol 3,5‐bisphosphate: Low abundance, high significanceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102155/1/bies201300012.pdf
dc.identifier.doi10.1002/bies.201300012en_US
dc.identifier.sourceBioEssaysen_US
dc.identifier.citedreferenceHazeki K, Nigorikawa K, Takaba Y, Segawa T, et al. 2012. Essential roles of PIKfyve and PTEN on phagosomal phosphatidylinositol 3‐phosphate dynamics. FEBS Lett 586: 4010 – 5.en_US
dc.identifier.citedreferenceZhou X, Wang L, Hasegawa H, Amin P, et al. 2010. Deletion of PIK3C3/Vps34 in sensory neurons causes rapid neurodegeneration by disrupting the endosomal but not the autophagic pathway. Proc Natl Acad Sci USA 107: 9424 – 9.en_US
dc.identifier.citedreferenceWinters JJ, Ferguson CJ, Lenk GM, Giger‐Mateeva VI, et al. 2011. Congenital CNS hypomyelination in the Fig4 null mouse is rescued by neuronal expression of the PI(3,5)P(2) phosphatase Fig4. J Neurosci 31: 17736 – 51.en_US
dc.identifier.citedreferenceGuo JS, Ma YH, Yan Q, Wang L, et al. 2012. Fig4 expression in the rodent nervous system and its potential role in preventing abnormal lysosomal accumulation. J Neuropathol Exp Neurol 71: 28 – 39.en_US
dc.identifier.citedreferenceYan Q, Guo J, Zhang X, Bai Y, et al. 2012. Trauma does not accelerate neuronal degeneration in Fig4 insufficient mice. J Neurol Sci 312: 102 – 7.en_US
dc.identifier.citedreferenceTsuruta F, Green EM, Rousset M, Dolmetsch RE. 2009. PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. J Cell Biol 187: 279 – 94.en_US
dc.identifier.citedreferenceSeebohm G, Neumann S, Theiss C, Novkovic T, et al. 2012. Identification of a novel signaling pathway and its relevance for GluA1 recycling. PloS One 7: e33889.en_US
dc.identifier.citedreferenceOsborne SL, Wen PJ, Boucheron C, Nguyen HN, et al. 2008. PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283: 2804 – 13.en_US
dc.identifier.citedreferenceLemaire JF, McPherson PS. 2006. Binding of Vac14 to neuronal nitric oxide synthase: Characterisation of a new internal PDZ‐recognition motif. FEBS Lett 580: 6948 – 54.en_US
dc.identifier.citedreferenceBolis A, Zordan P, Coviello S, Bolino A. 2007. Myotubularin‐related (MTMR) phospholipid phosphatase proteins in the peripheral nervous system. Mol Neurobiol 35: 308 – 16.en_US
dc.identifier.citedreferenceChow CY, Landers JE, Bergren SK, Sapp PC, et al. 2009. Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84: 85 – 8.en_US
dc.identifier.citedreferenceCampeau PM, Lenk GM, Lu JT, Bae Y, et al. 2013. Yunis‐Varón syndrome is caused by mutations in FIG4 encoding a phosphoinositide phosphatase. Am J Hum Genet 92: 781 – 91.en_US
dc.identifier.citedreferenceLi SL, Tiab L, Jiao XD, Munier FL, et al. 2005. Mutations in PIP5K3 are associated with Francois‐Neetens Mouchetee fleck corneal dystrophy. Am J Hum Genet 77: 54 – 63.en_US
dc.identifier.citedreferenceKotoulas A, Kokotas H, Kopsidas K, Droutsas K, et al. 2011. A novel PIKFYVE mutation in fleck corneal dystrophy. Mol Vis 17: 2776 – 81.en_US
dc.identifier.citedreferenceCarmel L, Efroni S, White PD, Aslakson E, et al. 2006. Gene expression profile of empirically delineated classes of unexplained chronic fatigue. Pharmacogenomics 7: 375 – 86.en_US
dc.identifier.citedreferenceMartyn C, Li J. 2013. Fig4 deficiency: a newly emerged lysosomal storage disorder ? Prog Neurobiol 101‐102: 35 – 45.en_US
dc.identifier.citedreferenceBerger P, Schaffitzel C, Berger I, Ban N, et al. 2003. Membrane association of myotubularin‐related protein 2 is mediated by a pleckstrin homology‐GRAM domain and a coiled‐coil dimerization module. Proc Natl Acad Sci USA 100: 12177 – 82.en_US
dc.identifier.citedreferenceSilswal N, Parelkar NK, Wacker MJ, Brotto M, et al. 2011. Phosphatidylinositol 3,5‐bisphosphate increases intracellular free Ca2+ in arterial smooth muscle cells and elicits vasocontraction. Am J Physiol Heart Circ Physiol 300: H2016 – 6.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Foti M, Carpentier JL, et al. 2003. PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 14: 4581 – 91.en_US
dc.identifier.citedreferenceNarayan K, Lemmon MA. 2006. Determining selectivity of phosphoinositide‐binding domains. Methods 39: 122 – 33.en_US
dc.identifier.citedreferenceChoudhury P, Srivastava S, Li Z, Ko K, et al. 2006. Specificity of the myotubularin family of phosphatidylinositol‐3‐phosphatase is determined by the PH/GRAM domain. J Biol Chem 281: 31762 – 9.en_US
dc.identifier.citedreferenceZhang X, Chow CY, Sahenk Z, Shy ME, et al. 2008. Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131: 1990 – 2001.en_US
dc.identifier.citedreferenceBolino A, Bolis A, Previtali SC, Dina G, et al. 2004. Disruption of Mtmr2 produces CMT4B1‐like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167: 711 – 21.en_US
dc.identifier.citedreferenceNorris FA, Auethavekiat V, Majerus PW. 1995. The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4‐phosphatase. J Biol Chem 270: 16128 – 33.en_US
dc.identifier.citedreferenceCarricaburu V, Lamia KA, Lo E, Favereaux L, et al. 2003. The phosphatidylinositol (PI)‐5‐phosphate 4‐kinase type II enzyme controls insulin signaling by regulating PI‐3,4,5‐trisphosphate degradation. Proc Natl Acad Sci USA 100: 9867 – 72.en_US
dc.identifier.citedreferenceRameh LE, Tolias KF, Duckworth BC, Cantley LC. 1997. A new pathway for synthesis of phosphatidylinositol‐4,5‐bisphosphate. Nature 390: 192 – 6.en_US
dc.identifier.citedreferenceGary JD, Wurmser AE, Bonangelino CJ, Weisman LS, et al. 1998. Fab1p is essential for PtdIns(3)P 5‐kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143: 65 – 79.en_US
dc.identifier.citedreferenceBurd CG, Emr SD. 1998. Phosphatidylinositol(3)‐phosphate signaling mediated by specific binding to RING FYVE domains. Mol Cell 2: 157 – 62.en_US
dc.identifier.citedreferenceDove SK, Cooke FT, Douglas MR, Sayers LG, et al. 1997. Osmotic stress activates phosphatidylinositol‐3,5‐bisphosphate synthesis. Nature 390: 187 – 92.en_US
dc.identifier.citedreferenceWhiteford CC, Brearley CA, Ulug ET. 1997. Phosphatidylinositol 3,5‐bisphosphate defines a novel PI 3‐kinase pathway in resting mouse fibroblasts. Biochem J 323: 597 – 601.en_US
dc.identifier.citedreferenceBonangelino CJ, Nau JJ, Duex JE, Brinkman M, et al. 2002. Osmotic stress‐induced increase of phosphatidylinositol 3,5‐bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156: 1015 – 28.en_US
dc.identifier.citedreferenceZolov SN, Bridges D, Zhang Y, Lee W‐W, et al. 2012. In vivo, Pikfyve generates PI(3,5)P2, which serves as both a signaling lipid and the major precursor for PI5P. Proc Natl Acad Sci USA 109: 17472 – 7.en_US
dc.identifier.citedreferenceBrockerhoff H, Ballou CE. 1962. Phosphate incorporation in brain phosphionositides. J Biol Chem 237: 49 – 52.en_US
dc.identifier.citedreferenceYamamoto A, Dewald DB, Boronenkov IV, Anderson RA, et al. 1995. Novel Pi(4)P 5‐kinase homolog, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6: 525 – 39.en_US
dc.identifier.citedreferenceCooke FT, Dove SK, McEwen RK, Painter G, et al. 1998. The stress‐activated phosphatidylinositol 3‐phosphate 5‐kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol 8: 1219 – 22.en_US
dc.identifier.citedreferenceSchu PV, Takegawa K, Fry MJ, Stack JH, et al. 1993. Phosphatidylinositol 3‐kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260: 88 – 91.en_US
dc.identifier.citedreferenceDuex JE, Nau JJ, Kauffman EJ, Weisman LS. 2006. Phosphoinositide 5‐phosphatase Fig 4p is required for both acute rise and subsequent fall in stress‐induced phosphatidylinositol 3,5‐bisphosphate levels. Eukaryot Cell 5: 723 – 31.en_US
dc.identifier.citedreferenceMcEwen RK, Dove SK, Cooke FT, Painter GF, et al. 1999. Complementation analysis in PtdInsP kinase‐deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3‐phosphate 5‐kinases. J Biol Chem 274: 33905 – 12.en_US
dc.identifier.citedreferencede Lartigue J, Polson H, Feldman M, Shokat K, et al. 2009. PIKfyve regulation of endosome‐linked pathways. Traffic 10: 883 – 93.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Delvecchio K, Xie YF, et al. 2011. The phosphoinositide kinase PIKfyve is vital in early embryonic development: preimplantation lethality of PIKfyve(−/−) embryos but normality of PIKfyve(+/−) mice. J Biol Chem 286: 13404 – 13.en_US
dc.identifier.citedreferenceJeffries TR, Dove SK, Michell RH, Parker PJ. 2004. PtdIns‐specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol Biol Cell 15: 2652 – 63.en_US
dc.identifier.citedreferenceMorishita M, Morimoto F, Kitamura K, Koga T, et al. 2002. Phosphatidylinositol 3‐phosphate 5‐kinase is required for the cellular response to nutritional starvation and mating pheromone signals in Schizosaccharomyces pombe. Genes Cells 7: 199 – 215.en_US
dc.identifier.citedreferenceSbrissa D, Ikonomov OC, Filios C, Delvecchio K, et al. 2012. Functional dissociation between PIKfyve‐synthesized PtdIns5P and PtdIns(3,5)P‐2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol 303: C436 – 46.en_US
dc.identifier.citedreferenceTakasuga S, Horie Y, Sasaki J, Ge‐Hong Sun‐Wada G, et al. 2013. Critical roles of type III phosphatidylinositol phosphate kinase in murine embryonic visceral endoderm and adult intestine. Proc Natl Acad Sci USA 110: 1726 – 31.en_US
dc.identifier.citedreferenceDuex JE, Tang F, Weisman LS. 2006. The Vac14p‐Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172: 693 – 704.en_US
dc.identifier.citedreferenceGary JD, Sato TK, Stefan CJ, Bonangelino CJ, et al. 2002. Regulation of Fab1 phosphatidylinositol 3‐phosphate 5‐kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13: 1238 – 51.en_US
dc.identifier.citedreferenceRudge SA, Anderson DM, Emr SD. 2004. Vacuole size control: regulation of PtdIns(3,5)P‐2 levels by the vacuole‐associated Vac14‐Fig4 complex, a PtdIns(3.5)P‐2‐specific phosphatase. Mol Biol Cell 15: 24 – 36.en_US
dc.identifier.citedreferenceChow CY, Zhang Y, Dowling JJ, Jin N, et al. 2007. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448: 68 – 72.en_US
dc.identifier.citedreferenceManford A, Xia TA, Saxena AK, Stefan C, et al. 2010. Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J 29: 1489 – 98.en_US
dc.identifier.citedreferenceDove SK, McEwen RK, Mayes A, Hughes DC, et al. 2002. Vac14 controls PtdIns(3,5)P‐2 synthesis and Fab1‐dependent protein trafficking to the multivesicular body. Curr Biol 12: 885 – 93.en_US
dc.identifier.citedreferenceBotelho RJ, Efe JA, Teis D, Emr SD. 2008. Assembly of a Fab1 phosphoinositide kinase signaling complex requires the Fig4 phosphoinositide phosphatase. Mol Biol Cell 19: 4273 – 86.en_US
dc.identifier.citedreferenceJin N, Chow CY, Liu L, Zolov SN, et al. 2008. VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27: 3221 – 34.en_US
dc.identifier.citedreferenceAlghamdi TA, Ho CY, Mrakovic A, Taylor D, et al. 2013. Vac14 protein multimerization is a prerequisite step for Fab1 protein complex assembly and function. J Biol Chem 288: 9363 – 72.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Fenner H, Shisheva A. 2009. PIKfyve‐ArPIKfyve‐Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 284: 35794 – 806.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Fligger J, Delvecchio K, et al. 2010. ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot‐Marie‐Tooth 4J disorder. J Biol Chem 285: 26760 – 4.en_US
dc.identifier.citedreferenceSbrissa D, Ikonomov OC, Fenner H, Shisheva A. 2008. ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384: 766 – 79.en_US
dc.identifier.citedreferenceSbrissa D, Ikonomov OC, Fu ZY, Ijuin T, et al. 2007. Core protein machinery for mammalian phosphatidylinositol 3,5‐bisphosphate synthesis and turnover that regulates the progression of endosomal transport ‐ Novel sac phosphatase joins the arpikfyve‐pikfyve complex. J Biol Chem 282: 23878 – 91.en_US
dc.identifier.citedreferenceLenk GM, Ferguson CJ, Chow CY, Jin N, et al. 2011. Pathogenic mechanism of the FIG4 mutation responsible for Charcot‐Marie‐Tooth disease CMT4J. PLoS Genet 7: e1002104.en_US
dc.identifier.citedreferenceBonangelino CJ, Catlett NL, Weisman LS. 1997. Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17: 6847 – 58.en_US
dc.identifier.citedreferenceBaskaran S, Ragusa MJ, Boura E, Hurley JH. 2012. Two‐site recognition of phosphatidylinositol 3‐phosphate by PROPPINs in autophagy. Mol Cell 47: 339 – 48.en_US
dc.identifier.citedreferenceWatanabe Y, Kobayashi T, Yamamoto H, Hoshida H, et al. 2012. Structure‐based analyses reveal distinct binding sites for Atg2 and phosphoinositides in Atg18. J Biol Chem 287: 31681 – 90.en_US
dc.identifier.citedreferenceKrick R, Busse RA, Scacioc A, Stephan M, et al. 2012. Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a beta‐propeller protein family. Proc Natl Acad Sci USA 109: E2042 – 9.en_US
dc.identifier.citedreferenceDove SK, Piper RC, McEwen RK, Yu JW, et al. 2004. Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors. EMBO J 23: 1922 – 33.en_US
dc.identifier.citedreferenceEfe JA, Botelho RJ, Emr SD. 2007. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5‐bisphosphate. Mol Biol Cell 18: 4232 – 44.en_US
dc.identifier.citedreferenceProikas‐Cezanne T, Ruckerbauer S, Stierhof YD, Berg C, et al. 2007. Human WIPI‐1 puncta‐formation: a novel assay to assess mammalian autophagy. FEBS Lett 581: 3396 – 404.en_US
dc.identifier.citedreferenceBotelho RJ. 2009. Changing phosphoinositides “on the fly”: how trafficking vesicles avoid an identity crisis. BioEssays 31: 1127 – 36.en_US
dc.identifier.citedreferenceBridges D, Ma JT, Park S, Inoki K, et al. 2012. Phosphatidylinositol 3,5‐bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol Biol Cell 23: 2955 – 62.en_US
dc.identifier.citedreferenceZhang Y, Zolov SN, Chow CY, Slutsky SG, et al. 2007. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5‐bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci USA 104: 17518 – 23.en_US
dc.identifier.citedreferenceJones DR, Foulger R, Keune WJ, Bultsma Y, et al. 2012. PtdIns5P is an oxidative stress‐induced second messenger that regulates PKB activation. FASEB J 27: 1644 – 56.en_US
dc.identifier.citedreferenceZhang Y, McCartney AJ, Zolov SN, Ferguson CJ, et al. 2012. Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P(2) and PI(5)P. EMBO J 31: 3442 – 56.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Shisheva A. 2006. Localized PtdIns 3,5‐P‐2 synthesis to regulate early endosome dynamics and. Am J Physiol Cell Physiol 291: C393 – C404.en_US
dc.identifier.citedreferenceShisheva A, Rusin B, Ikonomov OC, DeMarco C, et al. 2001. Localization and insulin‐regulated relocation of phosphoinositide 5‐kinase PIKfyve in 3T3‐L1 adipocytes. J Biol Chem 276: 11859 – 69.en_US
dc.identifier.citedreferenceCabezas A, Pattni K, Stenmark H. 2006. Cloning and subcellular localization of a human phosphatidylinositol 3‐phosphate 5‐kinase, PIKfyve/Fab1. Gene 371: 34 – 41.en_US
dc.identifier.citedreferenceRutherford AC, Traer C, Wassmer T, Pattni K, et al. 2006. The mammalian phosphatidylinositol 3‐phosphate 5‐kinase (PIKfyve) regulates endosome‐to‐TGN retrograde transport. J Cell Sci 119: 3944 – 57.en_US
dc.identifier.citedreferenceRusten TE, Rodahl LMW, Pattni K, Englund C, et al. 2006. Fab1 phosphatidylinositol 3‐phosphate 5‐kinase controls trafficking but not silencing of endocytosed receptors. Mol Biol Cell 17: 3989 – 4001.en_US
dc.identifier.citedreferenceSbrissa D, Ikonomov OC, Strakova J, Dondapati R, et al. 2004. A mammalian ortholog of Saccharomyces cerevisiae Vac14 that associates with and up‐regulates PIKfyve phosphoinositide 5‐kinase activity. Mol Cell Biol 24: 10437 – 47.en_US
dc.identifier.citedreferenceTronchere H, Laporte J, Pendaries C, Chaussade C, et al. 2004. Production of phosphatidylinositol 5‐phosphate by the phosphoinositide 3‐phosphatase myotubularin in mammalian cells. J Biol Chem 279: 7304 – 12.en_US
dc.identifier.citedreferenceOppelt A, Lobert VH, Haglund K, Mackey AM, et al. 2013. Production of phosphatidylinositol 5‐phosphate via PIKfyve and MTMR3 regulates cell migration. EMBO Rep 14: 149 – 59.en_US
dc.identifier.citedreferenceVaccari I, Dina G, Tronchere H, Kaufman E, et al. 2011. Genetic interaction between MTMR2 and FIG4 phospholipid phosphatases involved in Charcot‐Marie‐Tooth neuropathies. PLoS Genet 7: e1002319.en_US
dc.identifier.citedreferenceShisheva A. 2012. PIKfyve and its lipid products in health and in sickness. Curr Top Microbiol Immunol 362: 127 – 62.en_US
dc.identifier.citedreferenceSbrissa D, Ikonomov OC, Shisheva A. 2000. PIKfyve lipid kinase is a protein kinase: downregulation of 5′‐phosphoinositide product formation by autophosphorylation. Biochemistry 39: 15980 – 9.en_US
dc.identifier.citedreferenceHan BK, Emr SD. 2011. Phosphoinositide [PI(3,5)P2] lipid‐dependent regulation of the general transcriptional regulator Tup1. Genes Dev 25: 984 – 95.en_US
dc.identifier.citedreferenceCarlton J, Bujny M, Peter BJ, Oorschot VM, et al. 2004. Sorting nexin‐1 mediates tubular endosome‐to‐TGN transport through coincidence sensing of high‐ curvature membranes and 3‐phosphoinositides. Curr Biol 14: 1791 – 800.en_US
dc.identifier.citedreferenceCarlton JG, Bujny MV, Peter BJ, Oorschot VM, et al. 2005. Sorting nexin‐2 is associated with tubular elements of the early endosome, but is not essential for retromer‐mediated endosome‐to‐TGN transport. J Cell Sci 118: 4527 – 39.en_US
dc.identifier.citedreferenceKatoh Y, Ritter B, Gaffry T, Blondeau F, et al. 2009. The clavesin family, neuron‐specific lipid‐ and clathrin‐binding Sec14 proteins regulating lysosomal morphology. J Biol Chem 284: 27646 – 54.en_US
dc.identifier.citedreferencevan Gisbergen PA, Li M, Wu SZ, Bezanilla M. 2012. Class II formin targeting to the cell cortex by binding PI(3,5)P(2) is essential for polarized growth. J Cell Biol 198: 235 – 50.en_US
dc.identifier.citedreferenceDong XP, Shen D, Wang X, Dawson T, et al. 2010. PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1: 38.en_US
dc.identifier.citedreferenceShen J, Yu W‐M, Brotto M, Scherman JA, et al. 2009. Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca2+ homeostasis. Nat Cell Biol 11: 769 – 76.en_US
dc.identifier.citedreferenceLemmon MA. 2008. Membrane recognition by phospholipid‐binding domains. Nat Rev Mol Cell Biol 9: 99 – 111.en_US
dc.identifier.citedreferenceJefferies HB, Cooke FT, Jat P, Boucheron C, et al. 2008. A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9: 164 – 70.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Shisheva A. 2009. YM201636, an inhibitor of retroviral budding and PIKfyve‐catalyzed PtdIns(3,5)P‐2 synthesis, halts glucose entry by insulin in adipocytes. Biochem Biophys Res Commun 382: 566 – 70.en_US
dc.identifier.citedreferenceHirano T, Matsuzawa T, Takegawa K, Sato MH. 2011. Loss‐of‐function and gain‐of‐function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in Arabidopsis. Plant Physiol 155: 797 – 807.en_US
dc.identifier.citedreferenceWhitley P, Hinz S, Doughty J. 2009. Arabidopsis FAB1/PIKfyve proteins are essential for development of viable pollen. Plant Physiol 151: 1812 – 22.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Shisheva A. 2001. Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 6‐kinase PIKfyve. J Biol Chem 276: 26141 – 7.en_US
dc.identifier.citedreferenceFerguson CJ, Lenk GM, Meisler MH. 2009. Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18: 4868 – 78.en_US
dc.identifier.citedreferenceOnishi M, Nakamura Y, Koga T, Takegawa K, et al. 2003. Isolation of suppressor mutants of phosphatidylinositol 3‐phosphate 5‐kinase deficient cells in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 67: 1772 – 9.en_US
dc.identifier.citedreferenceFalkenburger BH, Jensen JB, Dickson EJ, Suh BC, et al. 2010. Phosphoinositides: lipid regulators of membrane proteins. J Physiol 588: 3179 – 85.en_US
dc.identifier.citedreferenceWang X, Zhang X, Dong XP, Samie M, et al. 2012. TPC proteins are phosphoinositide‐ activated sodium‐selective ion channels in endosomes and lysosomes. Cell 151: 372 – 83.en_US
dc.identifier.citedreferenceTouchberry CD, Bales IK, Stone JK, Rohrberg TJ, et al. 2010. Phosphatidylinositol 3,5‐bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor. J Biol Chem 285: 40312 – 21.en_US
dc.identifier.citedreferenceAugsten M, Hubner C, Nguyen M, Kunkel W, et al. 2002. Defective hyphal induction of a Candida albicans phosphatidylinositol 3‐phosphate 5‐kinase null mutant on solid media does not lead to decreased virulence. Infect Immun 70: 4462 – 70.en_US
dc.identifier.citedreferenceNicot AS, Fares H, Payrastre B, Chisholm AD, et al. 2006. The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in Caenorhabditis elegans. Mol Biol Cell 17: 3062 – 74.en_US
dc.identifier.citedreferenceBak G, Lee EJ, Lee Y, Kato M, et al. 2013. Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5‐bisphosphate. Plant Cell 25: 2202 – 16.en_US
dc.identifier.citedreferenceBaars TL, Petri S, Peters C, Mayer A. 2007. Role of the V‐ATPase in regulation of the vacuolar fission‐fusion equilibrium. Mol Biol Cell 18: 3873 – 82.en_US
dc.identifier.citedreferenceZieger M, Mayer A. 2012. Yeast vacuoles fragment in an asymmetrical two‐phase process with distinct protein requirements. Mol Biol Cell 23: 3438 – 49.en_US
dc.identifier.citedreferenceBryant NJ, Piper RC, Weisman LS, Stevens TH. 1998. Retrograde traffic out of the yeast vacuole to the TGN occurs via the prevacuolar/endosomal compartment. J Cell Biol 142: 651 – 63.en_US
dc.identifier.citedreferenceMichell RH, Heath VL, Lemmon MA, Dove SK. 2006. Phosphatidylinositol 3,5‐bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31: 52 – 63.en_US
dc.identifier.citedreferenceWhitley P, Reaves BJ, Hashimoto M, Riley AM, et al. 2003. Identification of mammalian Vps24p as an effector of phosphatidylinositol 3,5‐bisphosphate‐dependent endosome compartmentalization. J Biol Chem 278: 38786 – 95.en_US
dc.identifier.citedreferenceHo CY, Alghamdi TA, Botelho RJ. 2012. Phosphatidylinositol‐3,5‐bisphosphate: no longer the poor PIP2. Traffic 13: 1 – 8.en_US
dc.identifier.citedreferenceEr EE, Mendoza MC, Mackey AM, Rameh LE, et al. 2013. AKT facilitates EGFR trafficking and degradation by phosphorylating and activating PIKfyve. Sci Signal 6: ra45.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Mlak K, Deeb R, et al. 2003. Active PIKfyve associates with and promotes the membrane attachment of the late endosome‐to‐trans‐Golgi network transport factor Rab9 effector p40. J Biol Chem 278: 50863 – 71.en_US
dc.identifier.citedreferenceIkonomov OC, Fligger J, Sbrissa D, Dondapati R, et al. 2009. Kinesin adapter JLP links PIKfyve to microtubule‐based endosome‐to‐trans‐Golgi network traffic of Furin. J Biol Chem 284: 3750 – 61.en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Delvecchio K, Feng HZ, et al. 2013. Muscle‐specific Pikfyve gene disruption causes glucose intolerance, insulin resistance, adiposity, and hyperinsulinemia but not muscle fiber‐type switching. Am J Physiol Endocrinol Metab 305: E119 – 31.en_US
dc.identifier.citedreferenceBerwick DC, Dell GC, Welsh GI, Heesom KJ, et al. 2004. Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J Cell Sci 117: 5985 – 93.en_US
dc.identifier.citedreferenceRusten TE, Vaccari T, Lindmo K, Rodahl LMW, et al. 2007. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17: 1817 – 25.en_US
dc.identifier.citedreferenceMartin S, Harper CB, May LM, Coulson EJ, et al. 2013. Inhibition of PIKfyve by YM‐201636 dysregulates autophagy and leads to apoptosis‐independent neuronal cell death. PloS One 8: e60152.en_US
dc.identifier.citedreferenceKatona I, Zhang X, Bai Y, Shy ME, et al. 2011. Distinct pathogenic processes between Fig4‐deficient motor and sensory neurons. Eur J Neurosci 33: 1401 – 10.en_US
dc.identifier.citedreferenceKerr MC, Wang JTH, Castro NA, Hamilton NA, et al. 2010. Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J 29: 1331 – 47.en_US
dc.identifier.citedreferenceDove SK, Dong K, Kobayashi T, Williams FK, et al. 2009. Phosphatidylinositol 3,5‐bisphosphate and Fab1p/PlKfyve underPPIn endo‐lysosome function. Biochem J 419: 1 – 13.en_US
dc.identifier.citedreferenceHirano T, Sato MH. 2011. Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. Plant Signal Behav 6: 583 – 5.en_US
dc.identifier.citedreferenceFerguson CJ, Lenk GM, Jones JM, Grant AE, et al. 2012. Neuronal expression of Fig4 is both necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet 21: 3525 – 34.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.