Show simple item record

Amphetamine stimulates movement through thalamocortical glutamate release

dc.contributor.authorMabrouk, Omar S.en_US
dc.contributor.authorSemaan, Daniel Z.en_US
dc.contributor.authorMikelman, Sarahen_US
dc.contributor.authorGnegy, Margaret E.en_US
dc.contributor.authorKennedy, Robert T.en_US
dc.date.accessioned2014-01-08T20:34:48Z
dc.date.available2015-03-02T14:35:34Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationMabrouk, Omar S.; Semaan, Daniel Z.; Mikelman, Sarah; Gnegy, Margaret E.; Kennedy, Robert T. (2014). "Amphetamine stimulates movement through thalamocortical glutamate release." Journal of Neurochemistry 128(1): 152-161.en_US
dc.identifier.issn0022-3042en_US
dc.identifier.issn1471-4159en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102157
dc.description.abstractThe ventrolateral thalamus (VL) is a primary relay point between the basal ganglia and the primary motor cortex (M1). Using dual probe microdialysis and locomotor behavior monitoring, we investigated the contribution of VL input into M1 during amphetamine (AMPH)‐stimulated monoamine release and hyperlocomotion in rats. Tetrodotoxin (10 μM) perfusion into the VL significantly lowered hyperactivity induced by AMPH (1 mg/kg i.p.). This behavioral response corresponded to reduced cortical glutamate and monoamine release. To determine which glutamate receptors the thalamocortical projections acted upon, we perfused either the α‐amino‐3‐(3‐hydroxy‐5‐methyl‐isoxazol‐4‐yl)propanoic acid (AMPA)/kainate receptor antagonist 2,3‐dihydroxy‐6‐nitro‐7‐sulfamoyl‐benzo[f]quinoxaline‐2,3‐dione (NBQX) (10 μM) or the N‐methyl‐D‐aspartic acid (NMDA) receptor antagonist (MK‐801) intracortically followed by systemic AMPH. The results show that AMPA/kainate, and to a lesser extent NMDA receptors, mediated the observed effects. As glutamate–monoamine interactions could possibly occur through local or circuit‐based mechanisms, we isolated and perfused M1 tissue ex vivo to determine the extent of local glutamate–dopamine interactions. Taken together, these results demonstrate that AMPH generates hyperlocomotive states via thalamocortical signaling and that cortical AMPA receptors are an important mediator of these effects. This study utilizes dual probe microdialysis sampling and comprehensive LC‐MS analysis to determine the effects of amphetamine (1 mg/kg i.p.) on thalamocortical neurotransmission. Using pharmacological tools such as local thalamic tetrodotoxin (TTX) perfusion and glutamate antagonist at the cortical level, we demonstrate that thalamocortical glutamate (acting primarily through cortical AMPA receptors) is an essential component in amphetamine‐induced hyperlocomotion. This study utilizes dual probe microdialysis sampling and comprehensive LC‐MS analysis to determine the effects of amphetamine (1 mg/kg i.p.) on thalamocortical neurotransmission. Using pharmacological tools such as local thalamic tetrodotoxin (TTX) perfusion and glutamate antagonist at the cortical level, we demonstrate that thalamocortical glutamate (acting primarily through cortical AMPA receptors) is an essential component in amphetamine‐induced hyperlocomotion.en_US
dc.publisherAcademic Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherThalamusen_US
dc.subject.otherAmphetamineen_US
dc.subject.otherDopamineen_US
dc.subject.otherGlutamateen_US
dc.subject.otherMicrodialysisen_US
dc.subject.otherMotor Cortexen_US
dc.titleAmphetamine stimulates movement through thalamocortical glutamate releaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102157/1/jnc12378.pdf
dc.identifier.doi10.1111/jnc.12378en_US
dc.identifier.sourceJournal of Neurochemistryen_US
dc.identifier.citedreferenceRandrup A. and Munkvad I. ( 1969 ) Pharmacological studies on the brain mechanisms underlying two forms of behavioral excitation: stereotyped hyperactivity and “rage”. Ann. N. Y. Acad. Sci. 159, 928 – 938.en_US
dc.identifier.citedreferenceKonitsiotis S., Blanchet P. J., Verhagen L., Lamers E. and Chase T. N. ( 2000 ) AMPA receptor blockade improves levodopa‐induced dyskinesia in MPTP monkeys. Neurology 54, 1589 – 1595.en_US
dc.identifier.citedreferenceKrebs M. O., Trovero F., Desban M., Gauchy C., Glowinski J. and Kemel M. L. ( 1991 ) Distinct presynaptic regulation of dopamine release through NMDA receptors in striosome‐ and matrix‐enriched areas of the rat striatum. J. Neurosci. 11, 1256 – 1262.en_US
dc.identifier.citedreferenceMabrouk O. S., Li Q., Song P. and Kennedy R. T. ( 2011 ) Microdialysis and mass spectrometric monitoring of dopamine and enkephalins in the globus pallidus reveal reciprocal interactions that regulate movement. J. Neurochem. 118, 24 – 33.en_US
dc.identifier.citedreferenceMcFarland N. R. and Haber S. N. ( 2002 ) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J. Neurosci. 18, 8117 – 8132.en_US
dc.identifier.citedreferenceNarahashi T. ( 1974 ) Chemicals as tools in the study of excitable membranes. Physiol. Rev. 54, 813 – 889.en_US
dc.identifier.citedreferenceOsborne P. G., O'Connor W. T., Drew K. L. and Ungerstedt U. ( 1990 ) An in vivo microdialysis characterization of extracellular dopamine and GABA in dorsolateral striatum of awake freely moving and halothane anaesthetised rats. J. Neurosci. Methods 34, 99 – 105.en_US
dc.identifier.citedreferenceParent A. and Hazrati L. N. ( 1995 ) Functional anatomy of the basal ganglia. I. The cortico‐basal ganglia‐thalamo‐cortical loop. Brain Res. Brain Res. Rev. 20, 91 – 127.en_US
dc.identifier.citedreferenceParpura V., Basarsky T. A., Liu F., Jeftinija K., Jeftinija S. and Haydon P. G. ( 1994 ) Glutamate‐mediated astrocyte‐neuron signalling. Nature 6483, 744 – 747.en_US
dc.identifier.citedreferencePaxinos G. and Watson C. ( 2007 ) The Rat Brain in Stereotaxic Coordinates, 6th edn. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferenceRada P., Hernandez L. and Hoebel B. G. ( 2007 ) Feeding and systemic D‐amphetamine increase extracellular acetylcholine in the medial thalamus: a possible reward enabling function. Neurosci. Lett. 416, 184 – 187.en_US
dc.identifier.citedreferenceReid M. S., Hsu K. Jr and Berger S. P. ( 1997 ) Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: studies on the involvement of dopamine. Synapse 27, 95 – 105.en_US
dc.identifier.citedreferenceRoberts P. J. and Sharif N. A. ( 1978 ) Effects of l‐glutamate and related amino acids upon the release of [3H]dopamine from rat striatal slices. Brain Res. 157, 391 – 395.en_US
dc.identifier.citedreferenceSchenk U. and Matteoli M. ( 2004 ) Presynaptic AMPA receptors: more than just ion channels? Biol. Cell 96, 257 – 260.en_US
dc.identifier.citedreferenceSherman S. M. and Guillery R. W. ( 2001 ) Exploring the Thalamus, 1st edn. Academic Press, San Diego, CA.en_US
dc.identifier.citedreferenceShimizu N., Duan S. M., Hori T. and Oomura Y. ( 1990 ) Glutamate modulates dopamine release in the striatum as measured by brain microdialysis. Brain Res. Bull. 25, 99 – 102.en_US
dc.identifier.citedreferenceSong P., Mabrouk O. S., Hershey N. D. and Kennedy R. T. ( 2012 ) In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography‐mass spectrometry. Anal. Chem. 84, 412 – 419.en_US
dc.identifier.citedreferenceStrick P. L. ( 1976 ) Anatomical analysis of ventrolateral thalamic input to primate motor cortex. J. Neurophysiol. 39, 1020 – 1031.en_US
dc.identifier.citedreferenceTakahata R. and Moghaddam B. ( 1998 ) Glutamatergic regulation of basal and stimulus‐activated dopamine release in the prefrontal cortex. J. Neurochem. 71, 1443 – 1449.en_US
dc.identifier.citedreferenceTakahata R. and Moghaddam B. ( 2003 ) Activation of glutamate neurotransmission in the prefrontal cortex sustains the motoric and dopaminergic effects of phencyclidine. Neuropsychopharmacology 28, 1117 – 1124.en_US
dc.identifier.citedreferenceTimmerman W. and Westerink B. H. ( 1997 ) Brain microdialysis of GABA and glutamate: what does it signify? Synapse 27, 242 – 261.en_US
dc.identifier.citedreferenceWang J. K. ( 1991 ) Presynaptic glutamate receptors modulate dopamine release from striatal synaptosomes. J. Neurochem. 57, 819 – 822.en_US
dc.identifier.citedreferenceWatabe‐Uchida M., Zhu L., Ogawa S. K., Vamanrao A. and Uchida N. ( 2012 ) Whole‐brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74, 858 – 873.en_US
dc.identifier.citedreferenceWesterink B. H., Tuntler J., Damsma G., Rollema H. and de Vries J. B. ( 1987 ) The use of tetrodotoxin for the characterization of drug‐enhanced dopamine release in conscious rats studied by brain dialysis. Naunyn Schmiedebergs Arch. Pharmacol. 336, 502 – 507.en_US
dc.identifier.citedreferenceWilliams J. A., Comisarow J., Day J., Fibiger H. C. and Reiner P. B. ( 1994 ) State‐dependent release of acetylcholine in rat thalamus measured by in vivo microdialysis. J. Neurosci. 14, 5236 – 5242.en_US
dc.identifier.citedreferenceAlbin R. L. ( 1995 ) The pathophysiology of chorea/ballism and Parkinsonism. Parkinsonism Relat. Disord. 1, 3 – 11.en_US
dc.identifier.citedreferenceAlbin R. L., Young A. B. and Penney J. B. ( 1989 ) The functional anatomy of basal ganglia disorders. Trends Neurosci. 10, 366 – 375.en_US
dc.identifier.citedreferenceAlexander G. E. and Crutcher M. D. ( 1990 ) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266 – 271.en_US
dc.identifier.citedreferenceAlexander G. E., DeLong M. R. and Strick P. L. ( 1986 ) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357 – 381.en_US
dc.identifier.citedreferenceArnsten A. F. and Goldman‐Rakic P. S. ( 1984 ) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res. 306, 9 – 18.en_US
dc.identifier.citedreferenceAvelar A. J., Juliano S. A. and Garris P. A. ( 2013 ) Amphetamine augments vesicular dopamine release in the dorsal and ventral striatum through different mechanisms. J. Neurochem. 125, 373 – 385.en_US
dc.identifier.citedreferenceBenwell M. E., Balfour D. J. and Lucchi H. M. ( 1993 ) Influence of tetrodotoxin and calcium on changes in extracellular dopamine levels evoked by systemic nicotine. Psychopharmacology 112, 467 – 474.en_US
dc.identifier.citedreferenceBrown R. M., Crane A. M. and Goldman P. S. ( 1979 ) Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res. 168, 133 – 150.en_US
dc.identifier.citedreferenceBrown J. M., Hanson G. R. and Fleckenstein A. E. ( 2001 ) Regulation of the vesicular monoamine transporter‐2: a novel mechanism for cocaine and other psychostimulants. J. Pharmacol. Exp. Ther. 296, 762 – 767.en_US
dc.identifier.citedreferenceDaberkow D. P., Brown H. D., Bunner K. D., Kraniotis S. A., Doellman M. A., Ragozzino M. E., Garris P. A. and Roitman M. F. ( 2013 ) Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J. Neurosci. 33, 452 – 463.en_US
dc.identifier.citedreferenceDel Arco A., Martínez R. and Mora F. ( 1998 ) Amphetamine increases extracellular concentrations of glutamate in the prefrontal cortex of the awake rat: a microdialysis study. Neurochem. Res. 23, 1153 – 1158.en_US
dc.identifier.citedreferenceDeLong M. R. ( 1990 ) Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281 – 285.en_US
dc.identifier.citedreferenceDesce J. M., Godeheu G., Galli T., Artaud F., Chéramy A. and Glowinski J. ( 1992 ) L‐glutamate‐evoked release of dopamine from synaptosomes of the rat striatum: involvement of AMPA and N‐methyl‐D‐aspartate receptors. Neuroscience 47, 333 – 339.en_US
dc.identifier.citedreferenceDouglas C. L., Baghdoyan H. A. and Lydic R. ( 2001 ) M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse. J. Pharmacol. Exp. Ther. 299, 960 – 966.en_US
dc.identifier.citedreferenceEngber T. M., Dennis S. A., Jones B. E., Miller M. S. and Contreras P. C. ( 1998 ) Brain regional substrates for the actions of the novel wake‐promoting agent modafinil in the rat: comparison with amphetamine. Neuroscience 87, 905 – 911.en_US
dc.identifier.citedreferenceGaspar P., Duyckaerts C., Alvarez C., Javoy‐Agid F. and Berger B. ( 1991 ) Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's disease. Ann. Neurol. 30, 365 – 374.en_US
dc.identifier.citedreferenceGerfen C. R., Engber T. M., Mahan L. C., Susel Z., Chase T. N., Monsma F. J. Jr and Sibley D. R. ( 1990 ) D1 and D2 dopamine receptor‐regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429 – 1432.en_US
dc.identifier.citedreferenceGrofová I. and Rinvik E. ( 1974 ) Light and electron microscopical studies of the normal structure and main afferent connections of the nuclei ventralis lateralis and ventralis anterior thalami of the cat. Confin. Neurol. 36, 256 – 272.en_US
dc.identifier.citedreferenceHerkenham M. ( 1980 ) Laminar organization of thalamic projections to the rat neocortex. Science 4430, 532 – 535.en_US
dc.identifier.citedreferenceHomayoun H. and Moghaddam B. ( 2007 ) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J. Neurosci. 27, 11496 – 11500.en_US
dc.identifier.citedreferenceHondo H., Yonezawa Y., Nakahara T., Nakamura K., Hirano M., Uchimura H. and Tashiro N. ( 1994 ) Effect of phencyclidine on dopamine release in the rat prefrontal cortex; an in vivo microdialysis study. Brain Res. 633, 337 – 342.en_US
dc.identifier.citedreferenceHooks B. M., Mao T., Gutnisky D. A., Yamawaki N., Svoboda K. and Shepherd G. M. ( 2013 ) Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33, 748 – 760.en_US
dc.identifier.citedreferenceHosp J. A., Pekanovic A., Rioult‐Pedotti M. S. and Luft A. R. ( 2011 ) Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J. Neurosci. 31, 2481 – 2487.en_US
dc.identifier.citedreferenceImperato A., Obinu M. C. and Gessa G. L. ( 1993 ) Effects of cocaine and amphetamine on acetylcholine release in the hippocampus and caudate nucleus. Eur. J. Pharmacol. 238, 377 – 381.en_US
dc.identifier.citedreferenceKarler R., Calder L. D. and Turkanis S. A. ( 1991 ) DNQX blockade of amphetamine behavioral sensitization. Brain Res. 552, 295 – 300.en_US
dc.identifier.citedreferenceKarler R., Calder L. D., Thai L. H. and Bedingfield J. B. ( 1995 ) The dopaminergic, glutamatergic, GABAergic bases for the action of amphetamine and cocaine. Brain Res. 671, 100 – 104.en_US
dc.identifier.citedreferenceKelley A. E. and Throne L. C. ( 1992 ) NMDA receptors mediate the behavioral effects of amphetamine infused into the nucleus accumbens. Brain Res. Bull. 29, 247 – 254.en_US
dc.identifier.citedreferenceKharazia V. N. and Weinberg R. J. ( 1994 ) Glutamate in thalamic fibers terminating in layer IV of primary sensory cortex. J. Neurosci. 14, 6021 – 6032.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.