Show simple item record

Dopamine overdose hypothesis: Evidence and clinical implications

dc.contributor.authorVaillancourt, David E.en_US
dc.contributor.authorSchonfeld, Danielen_US
dc.contributor.authorKwak, Youngbinen_US
dc.contributor.authorBohnen, Nicolaas I.en_US
dc.contributor.authorSeidler, Rachaelen_US
dc.date.accessioned2014-01-08T20:34:51Z
dc.date.available2015-02-03T16:14:40Zen_US
dc.date.issued2013-12en_US
dc.identifier.citationVaillancourt, David E.; Schonfeld, Daniel; Kwak, Youngbin; Bohnen, Nicolaas I.; Seidler, Rachael (2013). "Dopamine overdose hypothesis: Evidence and clinical implications." Movement Disorders 28(14): 1920-1929.en_US
dc.identifier.issn0885-3185en_US
dc.identifier.issn1531-8257en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102168
dc.description.abstractAbout a half a century has passed since dopamine was identified as a neurotransmitter, and it has been several decades since it was established that people with Parkinson's disease receive motor symptom relief from oral levodopa. Despite the evidence that levodopa can reduce motor symptoms, there has been a developing body of literature that dopaminergic therapy can improve cognitive functions in some patients but make them worse in others. Over the past two decades, several laboratories have shown that dopaminergic medications can impair the action of intact neural structures and impair the behaviors associated with these structures. In this review, we consider the evidence that has accumulated in the areas of reversal learning, motor sequence learning, and other cognitive tasks. The purported inverted‐U shaped relationship between dopamine levels and performance is complex and includes many contributory factors. The regional striatal topography of nigrostriatal denervation is a critical factor, as supported by multimodal neuroimaging studies. A patient's individual genotype will determine the relative baseline position on this inverted‐U curve. Dopaminergic pharmacotherapy and individual gene polymorphisms can affect the mesolimbic and prefrontal cortical dopaminergic functions in a comparable, inverted‐U dose‐response relationship. Depending on these factors, a patient can respond positively or negatively to levodopa when performing reversal learning and motor sequence learning tasks. These tasks may continue to be relevant as our society moves to increased technological demands of a digital world that requires newly learned motor sequences and adaptive behaviors to manage daily life activities. © 2013 International Parkinson and Movement Disorder Societyen_US
dc.publisherMcGraw‐Hillen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherVentral Striatumen_US
dc.subject.otherDopamineen_US
dc.subject.otherDorsal Striatumen_US
dc.subject.otherPrefrontal Cortexen_US
dc.subject.otherLearningen_US
dc.titleDopamine overdose hypothesis: Evidence and clinical implicationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102168/1/mds25687.pdf
dc.identifier.doi10.1002/mds.25687en_US
dc.identifier.sourceMovement Disordersen_US
dc.identifier.citedreferenceLehericy S, Benali H, Van de Moortele PF, et al. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proc Natl Acad Sci U S A 2005; 102: 12566 – 12571.en_US
dc.identifier.citedreferenceKwak Y, Muller ML, Bohnen NI, Dayalu P, Seidler RD. L‐DOPA changes ventral striatum recruitment during motor sequence learning in Parkinson's disease. Behav Brain Res 2012; 230: 116 – 124.en_US
dc.identifier.citedreferenceSeidler RD, Purushotham A, Kim SG, Ugurbil K, Willingham D, Ashe J. Neural correlates of encoding and expression in implicit sequence learning. Exp Brain Res 2005; 165: 114 – 124.en_US
dc.identifier.citedreferenceHikosaka O, Nakamura K, Sakai K, Nakahara H. Central mechanisms of motor skill learning. Curr Opin Neurobiol 2002; 12: 217 – 222.en_US
dc.identifier.citedreferenceCarbon M, Eidelberg D. Functional imaging of sequence learning in Parkinson's disease. J Neurol Sci 2006; 248 ( 1-2 ): 72 – 77.en_US
dc.identifier.citedreferenceFeigin A, Ghilardi MF, Carbon M, et al. Effects of levodopa on motor sequence learning in Parkinson's disease. Neurology 2003; 60: 1744 – 1749.en_US
dc.identifier.citedreferenceCarbon M, Ghilardi MF, Feigin A, et al. Learning networks in health and Parkinson's disease: reproducibility and treatment effects. Hum Brain Mapp 2003; 19: 197 – 211.en_US
dc.identifier.citedreferenceGhilardi MF, Feigin AS, Battaglia F, et al. L‐Dopa infusion does not improve explicit sequence learning in Parkinson's disease. Parkinsonism Relat Disord 2007; 13: 146 – 151.en_US
dc.identifier.citedreferenceArgyelan M, Carbon M, Ghilardi MF, et al. Dopaminergic suppression of brain deactivation responses during sequence learning. J Neurosci 2008; 28: 10687 – 10695.en_US
dc.identifier.citedreferenceKwak Y, Bohnen NI, Muller ML, Dayalu P, Seidler RD. Striatal denervation pattern predicts levodopa effects on sequence learning in Parkinson's disease. J Mot Behav 2013; 45: 423 – 429.en_US
dc.identifier.citedreferenceFoltynie T, Goldberg TE, Lewis SG, et al. Planning ability in Parkinson's disease is influenced by the COMT val158met polymorphism. Mov Disord 2004; 19: 885 – 891.en_US
dc.identifier.citedreferenceWilliams‐Gray CH, Hampshire A, Barker RA, Owen AM. Attentional control in Parkinson's disease is dependent on COMT val 158 met genotype. Brain 2008; 131 ( pt 2 ): 397 – 408.en_US
dc.identifier.citedreferenceWilliams‐Gray CH, Hampshire A, Robbins TW, Owen AM, Barker RA. Catechol O‐methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson's disease. J Neurosci 2007; 27: 4832 – 4838.en_US
dc.identifier.citedreferenceKaroum F, Chrapusta SJ, Egan MF. 3‐Methoxytyramine is the major metabolite of released dopamine in the rat frontal cortex: reassessment of the effects of antipsychotics on the dynamics of dopamine release and metabolism in the frontal cortex, nucleus accumbens, and striatum by a simple two pool model. J Neurochem 1994; 63: 972 – 979.en_US
dc.identifier.citedreferenceMazei MS, Pluto CP, Kirkbride B, Pehek EA. Effects of catecholamine uptake blockers in the caudate‐putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 2002; 936 ( 1-2 ): 58 – 67.en_US
dc.identifier.citedreferenceMalhotra AK, Kestler LJ, Mazzanti C, Bates JA, Goldberg T, Goldman D. A functional polymorphism in the COMT gene and performance on a test of prefrontal cognition. Am J Psychiatry 2002; 159: 652 – 654.en_US
dc.identifier.citedreferenceMacDonald AA, Monchi O, Seergobin KN, Ganjavi H, Tamjeedi R, MacDonald PA. Parkinson's disease duration determines effect of dopaminergic therapy on ventral striatum function. Mov Disord 2013; 28: 153 – 160.en_US
dc.identifier.citedreferenceLi F, Harmer P, Fitzgerald K, et al. Tai chi and postural stability in patients with Parkinson's disease. N Engl J Med 2012; 366: 511 – 519.en_US
dc.identifier.citedreferenceCorcos DM, Robichaud JA, David FJ, et al. A two‐year randomized controlled trial of progressive resistance exercise for Parkinson's disease. Mov Disord 2013; 28: 1230 – 1240.en_US
dc.identifier.citedreferenceRay NJ, Strafella AP. Imaging impulse control disorders in Parkinson's disease and their relationship to addiction. J Neural Transm 2013; 120: 659 – 664.en_US
dc.identifier.citedreferenceCools R, Altamirano L, D'Esposito M. Reversal learning in Parkinson's disease depends on medication status and outcome valence. Neuropsychologia 2006; 44: 1663 – 1673.en_US
dc.identifier.citedreferenceFunkiewiez A, Ardouin C, Cools R, et al. Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson's disease. Mov Disord 2006; 21: 1656 – 1662.en_US
dc.identifier.citedreferenceCools R, Lewis SJ, Clark L, Barker RA, Robbins TW. L‐DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson's disease. Neuropsychopharmacology 2007; 32: 180 – 189.en_US
dc.identifier.citedreferenceCarlsson A, Lindqvist M, Magnusson T. 3,4‐Dihydroxyphenylalanine and 5‐hydroxytryptophan as reserpine antagonists. Nature 1957; 180: 1200 – 1200.en_US
dc.identifier.citedreferenceWatts RL, Koller WC, editors. Movement Disorders: Neurologic Principles and Practice. 2nd ed. New York: McGraw‐Hill; 2004.en_US
dc.identifier.citedreferenceCools R, Barker RA, Sahakian BJ, Robbins TW. Enhanced or impaired cognitive function in Parkinson's disease as a function of dopaminergic medication and task demands. Cereb Cortex 2001; 11: 1136 – 1143.en_US
dc.identifier.citedreferenceKwak Y, Muller ML, Bohnen NI, Dayalu P, Seidler RD. Effect of dopaminergic medications on the time course of explicit motor sequence learning in Parkinson's disease. J Neurophysiol 2010; 103: 942 – 949.en_US
dc.identifier.citedreferenceCools R. Dopaminergic modulation of cognitive function‐implications for L‐DOPA treatment in Parkinson's disease. Neurosci Biobehav Rev 2006; 30: 1 – 23.en_US
dc.identifier.citedreferenceGotham AM, Brown RG, Marsden CD. “Frontal” cognitive function in patients with Parkinson's disease “on” and “off” levodopa. Brain 1988; 111 ( pt 2 ): 299 – 321.en_US
dc.identifier.citedreferenceSwainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW. Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal or temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologia 2000; 38: 596 – 612.en_US
dc.identifier.citedreferenceKehagia AA, Barker RA, Robbins TW. Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson's disease. Lancet Neurol 2010; 9: 1200 – 1213.en_US
dc.identifier.citedreferenceRobert G, Drapier D, Verin M, Millet B, Azulay JP, Blin O. Cognitive impulsivity in Parkinson's disease patients: assessment and pathophysiology. Mov Disord 2009; 24: 2316 – 2327.en_US
dc.identifier.citedreferenceWiecki TV, Frank MJ. Neurocomputational models of motor and cognitive deficits in Parkinson's disease. Prog Brain Res 2010; 183: 275 – 297.en_US
dc.identifier.citedreferenceDahlstroem A, Fuxe K. Evidence for the existence of monoamine‐containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 1964; 232 ( suppl ): 231 – 255.en_US
dc.identifier.citedreferenceBjorklund A, Lindvall O. Dopamine‐containing systems in the CNS. In: Bjorklund A, Hokfelt T, editors. Handbook of Chemical Neuroanatomy. Amsterdam: Elsevier; 1984: 55 – 122.en_US
dc.identifier.citedreferenceFearnley JM, Lees AJ. Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 1991; 114 ( pt 5 ): 2283 – 2301.en_US
dc.identifier.citedreferenceVaillancourt DE, Spraker MB, Prodoehl J, et al. High‐resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009; 72: 1378 – 1384.en_US
dc.identifier.citedreferenceDu G, Lewis MM, Sen S, et al. Imaging nigral pathology and clinical progression in Parkinson's disease. Mov Disord 2012; 27: 1636 – 1643.en_US
dc.identifier.citedreferenceVaillancourt DE, Spraker MB, Prodoehl J, Zhou XJ, Little DM. Effects of aging on the ventral and dorsal substantia nigra using diffusion tensor imaging. Neurobiol Aging 2012; 33: 35 – 42.en_US
dc.identifier.citedreferenceMorrish PK, Sawle GV, Brooks DJ. Clinical and [18F]‐dopa PET findings in early Parkinson's disease. J Neurol Neurosurg Psychiatry 1995; 59: 597 – 600.en_US
dc.identifier.citedreferenceMorrish PK, Sawle GV, Brooks DJ. An [18F]dopa‐PET and clinical study of the rate of progression in Parkinson's disease. Brain 1996; 119 ( pt 2 ): 585 – 591.en_US
dc.identifier.citedreferenceNandhagopal R, Kuramoto L, Schulzer M, et al. Longitudinal progression of sporadic Parkinson's disease: a multi‐tracer positron emission tomography study. Brain 2009; 132 ( pt 11 ): 2970 – 2979.en_US
dc.identifier.citedreferenceCotzias GC, Papavasiliou PS, Gellene R. Modification of Parkinsonism—chronic treatment with L‐dopa. N Engl J Med 1969; 280: 337 – 345.en_US
dc.identifier.citedreferenceCools R, Clark L, Owen AM, Robbins TW. Defining the neural mechanisms of probabilistic reversal learning using event‐related functional magnetic resonance imaging. J Neurosci 2002; 22: 4563 – 4567.en_US
dc.identifier.citedreferenceSohn MH, Ursu S, Anderson JR, Stenger VA, Carter CS. The role of prefrontal cortex and posterior parietal cortex in task switching. Proc Natl Acad Sci U S A 2000; 97: 13448 – 13453.en_US
dc.identifier.citedreferenceYin HH, Knowlton BJ, Balleine BW. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 2004; 19: 181 – 189.en_US
dc.identifier.citedreferenceKimchi EY, Torregrossa MM, Taylor JR, Laubach M. Neuronal correlates of instrumental learning in the dorsal striatum. J Neurophysiol 2009; 102: 475 – 489.en_US
dc.identifier.citedreferenceRolls ET. The orbitofrontal cortex and reward. Cereb Cortex 2000; 10: 284 – 294.en_US
dc.identifier.citedreferenceHeekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward‐based decision making. Neuroreport 2007; 18: 951 – 955.en_US
dc.identifier.citedreferenceGraef S, Biele G, Krugel LK, et al. Differential influence of levodopa on reward‐based learning in Parkinson's disease [serial online]. Front Hum Neurosci 2010; 4: 169.en_US
dc.identifier.citedreferenceKnowlton BJ, Squire LR, Gluck MA. Probabilistic classification learning in amnesia. Learn Mem 1994; 1: 106 – 120.en_US
dc.identifier.citedreferenceShohamy D, Myers CE, Kalanithi J, Gluck MA. Basal ganglia and dopamine contributions to probabilistic category learning. Neurosci Biobehav Rev 2008; 32: 219 – 236.en_US
dc.identifier.citedreferenceKnowlton BJ, Mangels JA, Squire LR. A neostriatal habit learning system in humans. Science 1996; 273: 1399 – 1402.en_US
dc.identifier.citedreferenceShohamy D, Myers CE, Geghman KD, Sage J, Gluck MA. L‐dopa impairs learning, but spares generalization, in Parkinson's disease. Neuropsychologia 2006; 44: 774 – 784.en_US
dc.identifier.citedreferencePoldrack RA, Prabhakaran V, Seger CA, Gabrieli JD. Striatal activation during acquisition of a cognitive skill. Neuropsychology 1999; 13: 564 – 574.en_US
dc.identifier.citedreferenceSawaguchi T, Matsumura M, Kubota K. Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 1990; 63: 1385 – 1400.en_US
dc.identifier.citedreferenceWang Y, Goldman‐Rakic PS. D2 receptor regulation of synaptic burst firing in prefrontal cortical pyramidal neurons. Proc Natl Acad Sci U S A 2004; 101: 5093 – 5098.en_US
dc.identifier.citedreferenceWilliams GV, Goldman‐Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995; 376: 572 – 575.en_US
dc.identifier.citedreferenceSeamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci U S A 2001; 98: 301 – 306.en_US
dc.identifier.citedreferenceSeamans JK, Gorelova N, Durstewitz D, Yang CR. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 2001; 21: 3628 – 3638.en_US
dc.identifier.citedreferenceFrank MJ, Loughry B, O'Reilly RC. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn Affect Behav Neurosci 2001; 1: 137 – 160.en_US
dc.identifier.citedreferenceCools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D'Esposito M. Striatal dopamine predicts outcome‐specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci 2009; 29: 1538 – 1543.en_US
dc.identifier.citedreferencevan der Schaaf ME, van Schouwenburg MR, Geurts DE, Schellekens AF, Buitelaar JK, Verkes RJ, Cools R. Establishing the dopamine dependency of human striatal signals during reward and punishment reversal learning [published online ahead of print 25 November 2012]. Cereb Cortex 2012.en_US
dc.identifier.citedreferenceKish SJ, Shannak K, Hornykiewicz O. Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications. N Engl J Med 1988; 318: 876 – 880.en_US
dc.identifier.citedreferenceRakshi JS, Uema T, Ito K, et al. Frontal, midbrain and striatal dopaminergic function in early and advanced Parkinson's disease. A 3D [(18)F]dopa‐PET study. Brain 1999; 122 ( pt 9 ): 1637 – 1650.en_US
dc.identifier.citedreferenceKwak Y, Bohnen NI, Muller ML, Dayalu P, Burke DT, Seidler RD. Task‐dependent interactions between dopamine D2 receptor polymorphisms and L‐DOPA in patients with Parkinson's disease. Behav Brain Res 2013; 245: 128 – 136.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.