Show simple item record

Identification of a redox‐regulated chaperone network

dc.contributor.authorHoffmann, Jörg Hen_US
dc.contributor.authorLinke, Katrinen_US
dc.contributor.authorGraf, Paul CFen_US
dc.contributor.authorLilie, Haukeen_US
dc.contributor.authorJakob, Ursulaen_US
dc.date.accessioned2014-01-08T20:34:56Z
dc.date.available2014-01-08T20:34:56Z
dc.date.issued2004-01-14en_US
dc.identifier.citationHoffmann, Jörg H ; Linke, Katrin; Graf, Paul CF; Lilie, Hauke; Jakob, Ursula (2004). "Identification of a redoxâ regulated chaperone network." The EMBO Journal 23(1): 160-168. <http://hdl.handle.net/2027.42/102179>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102179
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherDisulfide Bonden_US
dc.subject.otherRedox Regulationen_US
dc.subject.otherChaperoneen_US
dc.subject.otherOxidative Stressen_US
dc.subject.otherHsp33en_US
dc.titleIdentification of a redox‐regulated chaperone networken_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid14685279en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102179/1/emboj7600016-sup-0001.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102179/2/emboj7600016.pdf
dc.identifier.doi10.1038/sj.emboj.7600016en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceMogk A, Schlieker C, Friedrich KL, Schonfeld HJ, Vierling E, Bukau B ( 2003 ) Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J Biol Chem 278: 31033 – 31042en_US
dc.identifier.citedreferenceAslund F, Zheng M, Beckwith J, Storz G ( 1999 ) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol‐disulfide status. Proc Natl Acad Sci USA 96: 6161 – 6165en_US
dc.identifier.citedreferenceBarbirz S, Jakob U, Glocker MO ( 2000 ) Mass spectrometry unravels disulfide bond formation as the mechanism that activates a molecular chaperone. J Biol Chem 275: 18759 – 18766en_US
dc.identifier.citedreferenceBeissinger M, Buchner J ( 1998 ) How chaperones fold proteins. Biol Chem 379: 245 – 259en_US
dc.identifier.citedreferenceBuchberger A, Schroder H, Buttner M, Valencia A, Bukau B ( 1994 ) A conserved loop in the ATPase domain of the DnaK chaperone is essential for stable binding of GrpE. Nat Struct Biol 1: 95 – 101en_US
dc.identifier.citedreferenceBuchner J, Schmidt M, Fuchs M, Jaenicke R, Rudolph R, Schmid FX, Kiefhaber T ( 1991 ) GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30: 1586 – 1591en_US
dc.identifier.citedreferenceCrouy‐Chanel A, Kohiyama M, Richarme G ( 1999 ) Interaction of DnaK with native proteins and membrane proteins correlates with their accessible hydrophobicity. Gene 230: 163 – 170en_US
dc.identifier.citedreferenceDeuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze‐Specking A, Langen H, Bukau B ( 2003 ) Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47: 1317 – 1328en_US
dc.identifier.citedreferenceEchave P, Esparza‐Ceron MA, Cabiscol E, Tamarit J, Ros J, Membrillo‐Hernandez J, Lin EC ( 2002 ) DnaK dependence of mutant ethanol oxidoreductases evolved for aerobic function and protective role of the chaperone against protein oxidative damage in Escherichia coli. Proc Natl Acad Sci USA 99: 4626 – 4631en_US
dc.identifier.citedreferenceEllis RJ, van der Vies SM, Hemmingsen SM ( 1989 ) The molecular chaperone concept. Biochem Soc Symp 55: 145 – 153en_US
dc.identifier.citedreferenceGraumann J, Lilie H, Tang X, Tucker KA, Hoffmann JH, Vijayalakshmi J, Saper M, Bardwell JC, Jakob U ( 2001 ) Activation of the redox‐regulated molecular chaperone Hsp33—a two‐step mechanism. Structure (Camb) 9: 377 – 387en_US
dc.identifier.citedreferenceHerbst R, Schafer U, Seckler R ( 1997 ) Equilibrium intermediates in the reversible unfolding of firefly ( Photinus pyralis ) luciferase. J Biol Chem 272: 7099 – 7105en_US
dc.identifier.citedreferenceJakob U, Eser M, Bardwell JC ( 2000 ) Redox switch of hsp33 has a novel zinc‐binding motif. J Biol Chem 275: 38302 – 38310en_US
dc.identifier.citedreferenceJakob U, Muse W, Eser M, Bardwell JC ( 1999 ) Chaperone activity with a redox switch. Cell 96: 341 – 352en_US
dc.identifier.citedreferenceMogk A, Tomoyasu T, Goloubinoff P, Rudiger S, Roder D, Langen H, Bukau B ( 1999 ) Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. Embo J 18: 6934 – 6949en_US
dc.identifier.citedreferencePrinz WA, Aslund F, Holmgren A, Beckwith J ( 1997 ) The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J Biol Chem 272: 15661 – 15667en_US
dc.identifier.citedreferenceStraus D, Walter W, Gross CA ( 1990 ) DnaK, DnaJ, and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of sigma 32. Genes Dev 4: 2202 – 2209en_US
dc.identifier.citedreferenceTsai B, Rodighiero C, Lencer WI, Rapoport TA ( 2001 ) Protein disulfide isomerase acts as a redox‐dependent chaperone to unfold cholera toxin. Cell 104: 937 – 948en_US
dc.identifier.citedreferenceVeinger L, Diamant S, Buchner J, Goloubinoff P ( 1998 ) The small heat‐shock protein IbpB from Escherichia coli stabilizes stress‐denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem 273: 11032 – 11037en_US
dc.identifier.citedreferenceZheng M, Aslund F, Storz G ( 1998 ) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279: 1718 – 1721en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.