Show simple item record

Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase

dc.contributor.authorPai, Chien‐huaen_US
dc.contributor.authorChiang, Bing‐yuen_US
dc.contributor.authorKo, Tzu‐ Pingen_US
dc.contributor.authorChou, Chia‐chengen_US
dc.contributor.authorChong, Cheong‐mengen_US
dc.contributor.authorYen, Fang‐jiunen_US
dc.contributor.authorChen, Shoujunen_US
dc.contributor.authorCoward, James Ken_US
dc.contributor.authorWang, Andrew H‐jen_US
dc.contributor.authorLin, Chun‐hungen_US
dc.date.accessioned2014-01-08T20:34:56Z
dc.date.available2014-01-08T20:34:56Z
dc.date.issued2006-12-13en_US
dc.identifier.citationPai, Chien‐hua ; Chiang, Bing‐yu ; Ko, Tzu‐ Ping ; Chou, Chia‐cheng ; Chong, Cheong‐meng ; Yen, Fang‐jiun ; Chen, Shoujun; Coward, James K; Wang, Andrew H‐j ; Lin, Chun‐hung (2006). "Dual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetase." The EMBO Journal 25(24): 5970-5982. <http://hdl.handle.net/2027.42/102183>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102183
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherBinding Siteen_US
dc.subject.otherTrypanothioneen_US
dc.subject.otherStructureen_US
dc.subject.otherMechanismen_US
dc.subject.otherGlutathionylspermidineen_US
dc.titleDual binding sites for translocation catalysis by Escherichia coli glutathionylspermidine synthetaseen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid17124497en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102183/1/emboj7601440.pdf
dc.identifier.doi10.1038/sj.emboj.7601440en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceOza SL, Ariyanayagam MR, Aitcheson N, Fairlamb AH ( 2003 ) Properties of trypanothione synthetase from Trypanosoma brucei. Mol Biochem Parasitol 131: 25 – 33en_US
dc.identifier.citedreferenceJones TA, Zou JY, Cowan SW, Kjeldgaard M ( 1991 ) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47: 110 – 119en_US
dc.identifier.citedreferenceKleywegt GJ, Jones TA ( 1998 ) Databases in protein crystallography. Acta Crystallogr D 54: 1119 – 1131en_US
dc.identifier.citedreferenceKrauth‐Siegel RL, Meiering SK, Schmidt H ( 2003 ) The parasite‐specific trypanothione metabolism of Trypanosoma and Leishmania. Biol Chem 384: 541 – 549en_US
dc.identifier.citedreferenceKwon DS, Lin CH, Chen S, Coward JK, Walsh CT, Bollinger Jr JM ( 1997 ) Dissection of glutathionylspermidine synthetase/amidase from Escherichia coli into autonomously folding and functional synthetase and amidase domains. J Biol Chem 272: 2429 – 2436en_US
dc.identifier.citedreferenceLin CH, Chen S, Kwon DS, Coward JK, Walsh CT ( 1997a ) Aldehyde and phosphinate analogs of glutathione and glutathionylspermidine: potent, selective binding inhibitors of the E. coli bifunctional glutathionylspermidine synthetase/amidase. Chem Biol 4: 859 – 866en_US
dc.identifier.citedreferenceLin CH, Kwon DS, Bollinger Jr JM, Walsh CT ( 1997b ) Evidence for a glutathionyl‐enzyme intermediate in the amidase activity of the bifunctional glutathionylspermidine synthetase/amidase from Escherichia coli. Biochemistry 36: 14930 – 14938en_US
dc.identifier.citedreferenceMarton LJ, Pegg AE ( 1995 ) Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 35: 55 – 91en_US
dc.identifier.citedreferenceMcRee DE ( 1999 ) XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J Struct Biol 125: 156 – 165en_US
dc.identifier.citedreferenceMeister A, Anderson ME ( 1983 ) Glutathione. Annu Rev Biochem 52: 711 – 760en_US
dc.identifier.citedreferenceMüller S, Liebau E, Walter RD, Krauth‐Siegel RL ( 2003 ) Thiol‐based redox metabolism of protozoan parasites. Trends Parasiol 19 (7): 320 – 328en_US
dc.identifier.citedreferenceMurzin AG ( 1996 ) Structural classification of proteins: new superfamilies. Curr Opin Struct Biol 6: 386 – 394en_US
dc.identifier.citedreferenceOtwinowski Z, Minor W ( 1997 ) Processing of X‐ray diffraction data collected in oscillation mode: macromolecular crystallography Part A. Methods Enzymol 276: 307 – 326en_US
dc.identifier.citedreferenceOza SL, Ariyanayagam MR, Fairlamb AH ( 2002a ) Characterization of recombinant glutathionylspermidine synthetase/amidase from Crithidia fasciculata. Biochem J 364: 679 – 686en_US
dc.identifier.citedreferenceOza SL, Shaw MP, Wyllie S, Fairlamb AH ( 2005 ) Trypanothione biosynthesis in Leishmania major. Mol Biochem Parasitol 139: 107 – 116en_US
dc.identifier.citedreferenceOza SL, Tetaud E, Ariyanayagam MR, Warnon SS, Fairlamb AH ( 2002b ) A single enzyme catalyses formation of trypanothione from glutathione and spermidine in Trypanosoma cruzi. J Biol Chem 277: 35853 – 35861en_US
dc.identifier.citedreferencePegg AE ( 1986 ) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234: 249 – 262en_US
dc.identifier.citedreferencePenketh PG, Kennedy WP, Patton CL, Sartorelli AC ( 1987 ) Trypanosomatid hydrogen peroxide [corrected] metabolism. FEBS Lett 221: 421 – 437en_US
dc.identifier.citedreferencePolekhina G, Board PG, Gali RR, Rossjohn J, Parker MW ( 1999 ) Molecular basis of glutathione synthetase deficiency and a rare gene permutation event. EMBO J 18: 3204 – 3213en_US
dc.identifier.citedreferenceShames SL, Fairlamb AH, Cerami A, Walsh CT ( 1986 ) Purification and characterization of trypanothione reductase from Crithidia fasciculata, a newly discovered member of the family of disulfide‐containing flavoprotein reductases. Biochemistry 25: 3519 – 3526en_US
dc.identifier.citedreferenceSmith K, Nadeau K, Bradley M, Walsh C, Fairlamb AH ( 1992 ) Purification of glutathionylspermidine and trypanothione synthetases from Crithidia fasciculata. Protein Sci 1: 874 – 883en_US
dc.identifier.citedreferenceTabor CW, Tabor H ( 1984 ) Polyamines. Annu Rev Biochem 53: 749 – 790en_US
dc.identifier.citedreferenceTabor H, Tabor CW ( 1975 ) Isolation, characterization, and turnover of glutathionylspermidine from Escherichia coli. J Biol Chem 250: 2648 – 2654en_US
dc.identifier.citedreferenceTerwilliger TC, Berendzen J ( 1999 ) Automated MAD and MIR structure solution. Acta Crystallogr D 55: 849 – 861en_US
dc.identifier.citedreferenceThoden JB, Blanchard CZ, Holden HM, Waldrop GL ( 2000 ) Movement of the biotin carboxylase B‐domain as a result of ATP binding. J Biol Chem 275: 16183 – 16190en_US
dc.identifier.citedreferenceWang CC ( 1995 ) Molecular mechanisms and therapeutic approaches to the treatment of African trypanosomiasis. Annu Rev Pharmacol Toxicol 35: 93 – 127en_US
dc.identifier.citedreferenceTerwilliger TC ( 2000 ) Maximum‐likelihood density modification. Acta Crystallogr D 56: 965 – 972en_US
dc.identifier.citedreferenceBarton GJ ( 1993 ) ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng 6: 37 – 40en_US
dc.identifier.citedreferenceBateman A, Rawlings ND ( 2003 ) The CHAP domain: a large family of amidases including GSP amidase and peptidoglycan hydrolases. Trends Biochem Sci 28: 234 – 237en_US
dc.identifier.citedreferenceBollinger Jr JM, Kwon DS, Huisman GW, Kolter R, Walsh CT ( 1995 ) Glutathionylspermidine metabolism in Escherichia coli. Purification, cloning, overproduction, and characterization of a bifunctional glutathionylspermidine synthetase/amidase. J Biol Chem 270: 14031 – 14041en_US
dc.identifier.citedreferenceBoveris A, Sies H, Martino EE, Docampo R, Turrens JF, Stoppani AO ( 1980 ) Deficient metabolic utilization of hydrogen peroxide in Trypanosoma cruzi. Biochem J 188: 643 – 648en_US
dc.identifier.citedreferenceBrünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse‐Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS ( 1998 ) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D 54: 905 – 921en_US
dc.identifier.citedreferenceChen S, Coward JK ( 1998 ) Investigations on new strategies for the facile synthesis of polyfunctionalized phosphinates: phosphinopeptide analogues of glutathionylspermidine. J Org Chem 63: 502 – 509en_US
dc.identifier.citedreferenceChen S, Lin CH, Walsh CT, Coward JK ( 1997 ) Novel inhibitors of trypanothione biosynthesis: synthesis and evaluation of a phosphinate analog of glutathionyl spermidine (GSP), a potent, slow‐binding inhibitor of GSP synthetase. Bioorg Med Chem Lett 7: 505 – 510en_US
dc.identifier.citedreferenceComini M, Menge U, Flohe L ( 2003 ) Biosynthesis of trypanothione in Trypanosoma brucei brucei. Biol Chem 384: 653 – 656en_US
dc.identifier.citedreferenceComini M, Menge U, Wissing J, Flohe L ( 2005 ) Trypanothione synthesis in crithidia revisited. J Biol Chem 280: 6850 – 6860en_US
dc.identifier.citedreferenceDubin T ( 1959 ) Evidence for conjugates between polyamines and glutathione in E. coli. Biochem Biophys Res Commun 1: 262 – 265en_US
dc.identifier.citedreferenceFairlamb AH, Cerami A ( 1985 ) Identification of a novel, thiol‐containing co‐factor essential for glutathione reductase enzyme activity in trypanosomatids. Mol Biochem Parasitol 14: 187 – 198en_US
dc.identifier.citedreferenceFairlamb AH, Cerami A ( 1992 ) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46: 695 – 729en_US
dc.identifier.citedreferenceFan C, Moews PC, Shi Y, Walsh CT, Knox JR ( 1995 ) A common fold for peptide synthetases cleaving ATP to ADP: glutathione synthetase and D‐alanine:D‐alanine ligase of Escherichia coli. Proc Natl Acad Sci USA 92: 1172 – 1176en_US
dc.identifier.citedreferenceFan C, Moews PC, Walsh CT, Knox JR ( 1994 ) Vancomycin resistance: structure of D‐alanine:D‐alanine ligase at 2.3 Å resolution. Science 266: 439 – 443en_US
dc.identifier.citedreferenceGuerrero SA, Hecht HJ, Hofmann B, Biebl H, Singh M ( 2001 ) Production of selenomethionine‐labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl Microbiol Biotechnol 56: 718 – 723en_US
dc.identifier.citedreferenceHenderson GB, Yamaguchi M, Novoa L, Fairlamb AH, Cerami A ( 1990 ) Biosynthesis of the trypanosomatid metabolite trypanothione: purification and characterization of trypanothione synthetase from Crithidia fasciculata. Biochemistry 29: 3924 – 3929en_US
dc.identifier.citedreferenceHiratake J ( 2005 ) Enzyme inhibitors as chemical tools to study enzyme catalysis: rational design, synthesis, and applications. Chem Record 5: 209 – 228en_US
dc.identifier.citedreferenceHiratake J, Kato H, Oda J ( 1994 ) Machanism‐based inactivation of glutathione synthetase by phosphinic acid transition‐state analogue. J Am Chem Soc 116: 12059 – 12060en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.