Show simple item record

Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P 2 and PI(5)P

dc.contributor.authorZhang, Yanlingen_US
dc.contributor.authorMcCartney, Amber J.en_US
dc.contributor.authorZolov, Sergey N.en_US
dc.contributor.authorFerguson, Cole J.en_US
dc.contributor.authorMeisler, Miriam H.en_US
dc.contributor.authorSutton, Michael A.en_US
dc.contributor.authorWeisman, Lois S.en_US
dc.date.accessioned2014-01-08T20:34:58Z
dc.date.available2014-01-08T20:34:58Z
dc.date.issued2012-08-15en_US
dc.identifier.citationZhang, Yanling; McCartney, Amber J; Zolov, Sergey N; Ferguson, Cole J; Meisler, Miriam H; Sutton, Michael A; Weisman, Lois S (2012). "Modulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P 2 and PI(5)P." The EMBO Journal 31(16): 3442-3456. <http://hdl.handle.net/2027.42/102191>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102191
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherAMPA Receptoren_US
dc.subject.otherPhosphatidylinositol 3,5‐Bisphosphateen_US
dc.subject.otherPtdIns(3,5)P 2en_US
dc.subject.otherSynapseen_US
dc.subject.otherPIKfyveen_US
dc.titleModulation of synaptic function by VAC14, a protein that regulates the phosphoinositides PI(3,5)P 2 and PI(5)Pen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid22842785en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/1/embj2012200.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/2/embj2012200-sup-0001.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102191/3/embj2012200-reviewer_comments.pdf
dc.identifier.doi10.1038/emboj.2012.200en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceRoth MG ( 2004 ) Phosphoinositides in constitutive membrane traffic. Physiol Rev 84: 699 – 730en_US
dc.identifier.citedreferenceLu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA ( 2009 ) Subunit composition of synaptic AMPA receptors revealed by a single‐cell genetic approach. Neuron 62: 254 – 268en_US
dc.identifier.citedreferenceMartin LJ ( 2010 ) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel, Switzerland) 3: 839 – 915en_US
dc.identifier.citedreferenceNicholson G, Lenk GM, Reddel SW, Grant AE, Towne CF, Ferguson CJ, Simpson E, Scheuerle A, Yasick M, Hoffman S, Blouin R, Brandt C, Coppola G, Biesecker LG, Batish SD, Meisler MH ( 2011 ) Distinctive genetic and clinical features of CMT4J: a severe neuropathy caused by mutations in the PI(3,5)P2 phosphatase FIG4. Brain 134: 1959 – 1971en_US
dc.identifier.citedreferenceOsborne SL, Wen PJ, Boucheron C, Nguyen HN, Hayakawa M, Kaizawa H, Parker PJ, Vitale N, Meunier FA ( 2008 ) PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283: 2804 – 2813en_US
dc.identifier.citedreferenceRosenmund C, Clements JD, Westbrook GL ( 1993 ) Nonuniform probability of glutamate release at a hippocampal synapse. Science 262: 754 – 757en_US
dc.identifier.citedreferenceRothman SM, Olney JW ( 1986 ) Glutamate and the pathophysiology of hypoxic‐‐ischemic brain damage. Ann Neurol 19: 105 – 111en_US
dc.identifier.citedreferenceRothstein JD, Martin LJ, Kuncl RW ( 1992 ) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326: 1464 – 1468en_US
dc.identifier.citedreferenceRudge SA, Anderson DM, Emr SD ( 2004 ) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole‐associated Vac14‐Fig4 complex, a PtdIns(3,5)P2‐specific phosphatase. Mol Biol Cell 15: 24 – 36en_US
dc.identifier.citedreferenceRusten TE, Vaccari T, Lindmo K, Rodahl LMW, Nezis IP, Sem‐Jacobsen C, Wendler F, Vincent J‐P, Brech A, Bilder D, Stenmark H ( 2007 ) ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17: 1817 – 1825en_US
dc.identifier.citedreferenceRutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ ( 2006 ) The mammalian phosphatidylinositol 3‐phosphate 5‐kinase (PIKfyve) regulates endosome‐to‐TGN retrograde transport. J Cell Sci 119: 3944 – 3957en_US
dc.identifier.citedreferenceSaksena S, Sun J, Chu T, Emr SD ( 2007 ) ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32: 561 – 573en_US
dc.identifier.citedreferenceSbrissa D, Ikonomov OC, Filios C, Delvecchio K, Shisheva A ( 2012 ) Functional dissociation between PIKfyve‐synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol (advance online publication, 23 May 2012; doi:10.1152/ajpcell.00105.2012)en_US
dc.identifier.citedreferenceSbrissa D, Ikonomov OC, Shisheva A ( 1999 ) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5‐phosphoinositides. Effect of insulin. J Biol Chem 274: 21589 – 21597en_US
dc.identifier.citedreferenceShen J, Yu W‐M, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu C‐K ( 2009 ) Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca(2+) homeostasis. Nat Cell Biol 11: 769 – 776en_US
dc.identifier.citedreferenceSieburth D, Ch'ng Q, Dybbs M, Tavazoie M, Kennedy S, Wang D, Dupuy D, Rual J‐F, Hill DE, Vidal M, Ruvkun G, Kaplan JM ( 2005 ) Systematic analysis of genes required for synapse structure and function. Nature 436: 510 – 517en_US
dc.identifier.citedreferenceSong I, Huganir RL ( 2002 ) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25: 578 – 588en_US
dc.identifier.citedreferenceTochio H, Mok YK, Zhang Q, Kan HM, Bredt DS, Zhang M ( 2000 ) Formation of nNOS/PSD‐95 PDZ dimer requires a preformed beta‐finger structure from the nNOS PDZ domain. J Mol Biol 303: 359 – 370en_US
dc.identifier.citedreferenceTronchère H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, Mandel JL, Payrastre B ( 2004 ) Production of phosphatidylinositol 5‐phosphate by the phosphoinositide 3‐phosphatase myotubularin in mammalian cells. J Biol Chem 279: 7304 – 7312en_US
dc.identifier.citedreferenceTsuruta F, Green EM, Rousset M, Dolmetsch RE ( 2009 ) PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. J Cell Biol 187: 279 – 294en_US
dc.identifier.citedreferenceTurrigiano GG ( 2008 ) The self‐tuning neuron: synaptic scaling of excitatory synapses. Cell 135: 422 – 435en_US
dc.identifier.citedreferenceYin HL, Janmey PA ( 2003 ) Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 65: 761 – 789en_US
dc.identifier.citedreferenceZhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J ( 2008 ) Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131: 1990 – 2001en_US
dc.identifier.citedreferenceZhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS ( 2007 ) Loss of Vac14, a regulator of the signalling lipid phosphatidylinositol 3,5‐bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci USA 104: 17518 – 17523en_US
dc.identifier.citedreferenceBalla T ( 2006 ) Phosphoinositide‐derived messengers in endocrine signaling. J Endocrinol 188: 135 – 153en_US
dc.identifier.citedreferenceBeal MF ( 1992 ) Mechanisms of excitotoxicity in neurologic diseases. FASEB J 6: 3338 – 3344en_US
dc.identifier.citedreferenceBonangelino CJ, Catlett NL, Weisman LS ( 1997 ) Vac7p, a novel vacuolar protein, is required for normal vacuole inheritance and morphology. Mol Cell Biol 17: 6847 – 6858en_US
dc.identifier.citedreferenceBonangelino CJ, Nau JJ, Duex JE, Brinkman M, Wurmser AE, Gary JD, Emr SD, Weisman LS ( 2002 ) Osmotic stress‐induced increase of phosphatidylinositol 3,5‐bisphosphate requires Vac14p, an activator of the lipid kinase Fab1p. J Cell Biol 156: 1015 – 1028en_US
dc.identifier.citedreferenceBrown TC, Tran IC, Backos DS, Esteban JA ( 2005 ) NMDA receptor‐dependent activation of the small GTPase Rab5 drives the removal of synaptic AMPA receptors during hippocampal LTD. Neuron 45: 81 – 94en_US
dc.identifier.citedreferenceBrunet A, Datta SR, Greenberg ME ( 2001 ) Transcription‐dependent and ‐independent control of neuronal survival by the PI3K‐Akt signaling pathway. Curr Opin Neurobiol 11: 297 – 305en_US
dc.identifier.citedreferenceBryant NJ, Piper RC, Weisman LS, Stevens TH ( 1998 ) Retrograde traffic out of the yeast vacuole to the TGN occurs via the prevacuolar/endosomal compartment. J Cell Biol 142: 651 – 663en_US
dc.identifier.citedreferenceCabezas A, Pattni K, Stenmark H ( 2006 ) Cloning and subcellular localization of a human phosphatidylinositol 3‐phosphate 5‐kinase, PIKfyve/Fab1. Gene 371: 34 – 41en_US
dc.identifier.citedreferenceCantley LC ( 2002 ) The phosphoinositide 3‐kinase pathway. Science 296: 1655 – 1657en_US
dc.identifier.citedreferenceChow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna‐Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH ( 2009 ) Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84: 85 – 88en_US
dc.identifier.citedreferenceChow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH ( 2007 ) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448: 68 – 72en_US
dc.identifier.citedreferenceCorvera S, D'Arrigo A, Stenmark H ( 1999 ) Phosphoinositides in membrane traffic. Curr Opin Cell Biol 11: 460 – 465en_US
dc.identifier.citedreferencede Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbé S, Clague MJ ( 2009 ) PIKfyve regulation of endosome‐linked pathways. Traffic 10: 883 – 893en_US
dc.identifier.citedreferenceDittman J, Ryan TA ( 2009 ) Molecular circuitry of endocytosis at nerve terminals. Annu Rev Cell Dev Biol 25: 133 – 160en_US
dc.identifier.citedreferenceDong X‐p, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H ( 2010 ) PI(3,5)P2 controls membrane traffic by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat Commun 1: 38en_US
dc.identifier.citedreferenceDotti CG, Sullivan CA, Banker GA ( 1988 ) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8: 1454 – 1468en_US
dc.identifier.citedreferenceDove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA ( 2004 ) Svp1p defines a family of phosphatidylinositol 3,5‐bisphosphate effectors. EMBO J 23: 1922 – 1933en_US
dc.identifier.citedreferenceDuex JE, Nau JJ, Kauffman EJ, Weisman LS ( 2006a ) Phosphoinositide 5‐phosphatase Fig 4p is required for both acute rise and subsequent fall in stress‐induced phosphatidylinositol 3,5‐bisphosphate levels. Eukaryot Cell 5: 723 – 731en_US
dc.identifier.citedreferenceDuex JE, Tang F, Weisman LS ( 2006b ) The Vac14p‐Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172: 693 – 704en_US
dc.identifier.citedreferenceFerguson CJ, Lenk GM, Jones JM, Grant AE, Winters JJ, Dowling JJ, Giger RJ, Meisler MH ( 2012 ) Neuronal expression of Fig4 is necessary and sufficient to prevent spongiform neurodegeneration. Hum Mol Genet (advance online publication, 6 June 2012; doi:10.1093/hmg/dds179)en_US
dc.identifier.citedreferenceFerguson CJ, Lenk GM, Meisler MH ( 2009 ) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18: 4868 – 4878en_US
dc.identifier.citedreferenceGary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD ( 1998 ) Fab1p is essential for PtdIns(3)P 5‐kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143: 65 – 79en_US
dc.identifier.citedreferenceGong L‐W, De Camilli P ( 2008 ) Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc Natl Acad Sci USA 105: 17561 – 17566en_US
dc.identifier.citedreferenceHan B‐K, Emr SD ( 2011 ) Phosphoinositide [PI(3,5)P2] lipid‐dependent regulation of the general transcriptional regulator Tup1. Genes Dev 25: 984 – 995en_US
dc.identifier.citedreferenceHirano T, Matsuzawa T, Takegawa K, Sato MH ( 2011 ) Loss‐of‐function and gain‐of‐function mutations in FAB1A/B impair endomembrane homeostasis, conferring pleiotropic developmental abnormalities in arabidopsis. Plant Physiol 155: 797 – 807en_US
dc.identifier.citedreferenceHirano T, Sato MH ( 2011 ) Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. Plant Signal Behav 6: 583 – 585en_US
dc.identifier.citedreferenceHorton AC, Rácz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD ( 2005 ) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48: 757 – 771en_US
dc.identifier.citedreferenceHuettner JE, Bean BP ( 1988 ) Block of N‐methyl‐D‐aspartate‐activated current by the anticonvulsant MK‐801: selective binding to open channels. Proc Natl Acad Sci USA 85: 1307 – 1311en_US
dc.identifier.citedreferenceIbáñez CF ( 2007 ) Message in a bottle: long‐range retrograde signaling in the nervous system. Trends Cell Biol 17: 519 – 528en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Delvecchio K, Xie Y, Jin J‐P, Rappolee D, Shisheva A ( 2011 ) The phosphoinositide kinase PIKfyve is vital in early embryonic development: Preimplantation lethality of PIKfyve−/− embryos but normality of PIKfyve+/− mice. J Biol Chem 286: 13404 – 13413en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Fenner H, Shisheva A ( 2009 ) PIKfyve‐ArPIKfyve‐Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 284: 35794 – 35806en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Fligger J, Delvecchio K, Shisheva A ( 2010 ) ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot‐Marie‐Tooth 4J disorder. J Biol Chem 285: 26760 – 26764en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Foti M, Carpentier J‐L, Shisheva A ( 2003 ) PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 14: 4581 – 4591en_US
dc.identifier.citedreferenceIkonomov OC, Sbrissa D, Shisheva A ( 2001 ) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5‐kinase PIKfyve. J Biol Chem 276: 26141 – 26147en_US
dc.identifier.citedreferenceJefferies HBJ, Cooke FT, Jat P, Boucheron C, Koizumi T, Hayakawa M, Kaizawa H, Ohishi T, Workman P, Waterfield MD, Parker PJ ( 2008 ) A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9: 164 – 170en_US
dc.identifier.citedreferenceJin N, Chow CY, Liu L, Zolov SN, Bronson R, Davisson M, Petersen JL, Zhang Y, Park S, Duex JE, Goldowitz D, Meisler MH, Weisman LS ( 2008 ) VAC14 nucleates a protein complex essential for the acute interconversion of PI3P and PI(3,5)P(2) in yeast and mouse. EMBO J 27: 3221 – 3234en_US
dc.identifier.citedreferenceKatona I, Zhang X, Bai Y, Shy ME, Guo J, Yan Q, Hatfield J, Kupsky WJ, Li J ( 2011 ) Distinct pathogenic processes between Fig4‐deficient motor and sensory neurons. Eur J Neurosci 33: 1401 – 1410en_US
dc.identifier.citedreferenceKennedy MJ, Ehlers MD ( 2006 ) Organelles and trafficking machinery for postsynaptic plasticity. Annu Rev Neurosci 29: 325 – 362en_US
dc.identifier.citedreferenceKopec CD, Li B, Wei W, Boehm J, Malinow R ( 2006 ) Glutamate receptor exocytosis and spine enlargement during chemically induced long‐term potentiation. J Neurosci 26: 2000 – 2009en_US
dc.identifier.citedreferenceLasiecka ZM, Winckler B ( 2011 ) Mechanisms of polarized membrane trafficking in neurons ‐ focusing in on endosomes. Mol Cell Neurosci 48: 278 – 287en_US
dc.identifier.citedreferenceLee HW, Kim Y, Han K, Kim H, Kim E ( 2010 ) The phosphoinositide 3‐phosphatase MTMR2 interacts with PSD‐95 and maintains excitatory synapses by modulating endosomal traffic. J Neurosci 30: 5508 – 5518en_US
dc.identifier.citedreferenceLemaire J‐F, McPherson PS ( 2006 ) Binding of Vac14 to neuronal nitric oxide synthase: Characterisation of a new internal PDZ‐recognition motif. FEBS Lett 580: 6948 – 6954en_US
dc.identifier.citedreferenceLenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ, Giger RJ, Dowling JJ, Weisman LS, Meisler MH ( 2011 ) Pathogenic mechanism of the FIG4 mutation responsible for charcot‐marie‐tooth disease CMT4J. PLoS Genet 7: e1002104 – e1002104en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.