Show simple item record

Dealing with dangerous accidents: DNA double‐strand breaks take centre stage

dc.contributor.authorCostanzo, Vincenzoen_US
dc.contributor.authorChaudhuri, Jayantaen_US
dc.contributor.authorFung, Jennifer Cen_US
dc.contributor.authorMoran, John Ven_US
dc.date.accessioned2014-01-08T20:34:59Z
dc.date.available2014-01-08T20:34:59Z
dc.date.issued2009-08en_US
dc.identifier.citationCostanzo, Vincenzo; Chaudhuri, Jayanta; Fung, Jennifer C; Moran, John V (2009). "Dealing with dangerous accidents: DNA double‐strand breaks take centre stage." EMBO reports 10(8): 837-842. <http://hdl.handle.net/2027.42/102193>en_US
dc.identifier.issn1469-221Xen_US
dc.identifier.issn1469-3178en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102193
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherRecombinationen_US
dc.subject.otherCopy‐Number Variationen_US
dc.subject.otherDNA Repairen_US
dc.subject.otherGenome Instabilityen_US
dc.subject.otherNon‐Homologous End Joiningen_US
dc.titleDealing with dangerous accidents: DNA double‐strand breaks take centre stageen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid19609319en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102193/1/embr2009173.pdf
dc.identifier.doi10.1038/embor.2009.173en_US
dc.identifier.sourceEMBO reportsen_US
dc.identifier.citedreferenceRevy P, Buck D, le Deist F, de Villartay JP ( 2005 ) The repair of DNA damages/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Adv Immunol 87: 237 – 295en_US
dc.identifier.citedreferenceGeisberger R, Rada C, Neuberger MS ( 2009 ) The stability of AID and its function in class‐switching are critically sensitive to the identity of its nuclear‐export sequence. Proc Natl Acad Sci USA 106: 6736 – 6741en_US
dc.identifier.citedreferenceGrey C, Baudat F, de Massy B ( 2009 ) Genome‐wide control of the distribution of meiotic recombination. PLoS Biol 7: 327 – 339en_US
dc.identifier.citedreferenceHuang Y, Giblin W, Kubec M, Westfield G, St Charles J, Chadde L, Kraftson S, Sekiguchi J ( 2009 ) Impact of a hypomorphic Artemis disease allele on lymphocyte development, DNA end processing, and genome stability. J Exp Med 206: 893 – 908en_US
dc.identifier.citedreferenceIp SC, Rass U, Blanco MG, Flynn HR, Skehel JM, West SC ( 2008 ) Identification of Holliday junction resolvases from humans and yeast. Nature 456: 357 – 361en_US
dc.identifier.citedreferenceKeeney S, Neale MJ ( 2006 ) Initiation of meiotic recombination by formation of DNA double‐strand breaks: mechanism and regulation. Biochem Soc Trans 34: 523 – 525en_US
dc.identifier.citedreferenceLee JA, Carvalho CM, Lupski JR ( 2007 ) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131: 1235 – 1247en_US
dc.identifier.citedreferenceLiu Y, West SC ( 2004 ) Happy Hollidays: 40th anniversary of the Holliday junction. Nat Rev Mol Cell Biol 5: 937 – 944en_US
dc.identifier.citedreferenceLupski JR ( 2009 ) Genomic disorders ten years on. Genome Med 1: 42en_US
dc.identifier.citedreferenceMimitou EP, Symington LS ( 2008 ) Sae2, Exo1 and Sgs1 collaborate in DNA double‐strand break processing. Nature 455: 770 – 774en_US
dc.identifier.citedreferenceMorgan HD, Dean W, Coker HA, Reik W, Petersen‐Mahrt SK ( 2004 ) Activation‐induced cytidine deaminase deaminates 5‐methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279: 52353 – 52360en_US
dc.identifier.citedreferenceMuramatsu M, Nagaoka H, Shinkura R, Begum NA, Honjo T ( 2007 ) Discovery of activation‐induced cytidine deaminase, the engraver of antibody memory. Adv Immunol 94: 1 – 36en_US
dc.identifier.citedreferenceParvanov ED, Ng SH, Petkov PM, Paigen K ( 2009 ) Trans‐regulation of mouse meiotic recombination hotspots by Rcr1. PLoS Biol 7: 340 – 349en_US
dc.identifier.citedreferenceRamiro A, San‐Martin BR, McBride K, Jankovic M, Barreto V, Nussenzweig A, Nussenzweig MC ( 2007 ) The role of activation‐induced deaminase in antibody diversification and chromosome translocations. Adv Immunol 94: 75 – 107en_US
dc.identifier.citedreferenceReid LJ, Shakya R, Modi AP, Lokshin M, Cheng JT, Jasin M, Baer R, Ludwig T ( 2008 ) E3 ligase activity of BRCA1 is not essential for cell viability of homology‐directed repair of double‐strand DNA breaks. Proc Natl Acad Sci USA 105: 20876 – 20881en_US
dc.identifier.citedreferenceRobbiani DF et al ( 2008 ) AID is required for the chromosomal breaks in c‐myc that lead to c‐myc/IgH translocations. Cell 135: 1028 – 1038en_US
dc.identifier.citedreferenceSekiguchi JM, Ferguson DO ( 2006 ) DNA double‐strand break repair: a relentless hunt uncovers new prey. Cell 124: 260 – 262en_US
dc.identifier.citedreferenceTsai AG, Lu H, Raghavan SC, Muschen M, Hsieh CL, Lieber MR ( 2008 ) Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135: 1130 – 1142en_US
dc.identifier.citedreferenceWang B, Hurov K, Hofmann K, Elledge SJ ( 2009 ) NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev 23: 729 – 739en_US
dc.identifier.citedreferenceWeinstock DM, Brunet E, Jasin M ( 2007 ) Formation of NHEJ‐derived reciprocal chromosomal translocations does not require Ku70. Nat Cell Biol 9: 978 – 981en_US
dc.identifier.citedreferenceZhu Z, Chung WH, Shim EY, Lee SE, Ira G ( 2008 ) Sgs1 helicase and two nucleases DNA2 and Exo1 resect DNA double‐strand break‐induced gene conversion. Cell 134: 981 – 994en_US
dc.identifier.citedreferenceBrunet E, Simsek D, Tomishima M, DeKelver R, Choi VM, Gregory P, Urnov F, Weinstock DM, Jasin M ( 2009 ) Chromosomal translocations induced at specified loci in human stem cells. Proc Natl Acad Sci USA 106: 10620 – 10625en_US
dc.identifier.citedreferenceBuis J, Wu Y, Deng Y, Leddon J, Westfield G, Eckersdorff M, Sekiguchi JM, Chang S, Ferguson DO ( 2008 ) Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 135: 85 – 96en_US
dc.identifier.citedreferenceChaudhuri J et al ( 2007 ) Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol 94: 157 – 214en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.