Show simple item record

Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin‐3

dc.contributor.authorTodi, Sokol Ven_US
dc.contributor.authorWinborn, Brett Jen_US
dc.contributor.authorScaglione, K Matthewen_US
dc.contributor.authorBlount, Jessica Ren_US
dc.contributor.authorTravis, Sue Men_US
dc.contributor.authorPaulson, Henry Len_US
dc.date.accessioned2014-01-08T20:35:02Z
dc.date.available2014-01-08T20:35:02Z
dc.date.issued2009-02-18en_US
dc.identifier.citationTodi, Sokol V; Winborn, Brett J; Scaglione, K Matthew; Blount, Jessica R; Travis, Sue M; Paulson, Henry L (2009). "Ubiquitination directly enhances activity of the deubiquitinating enzyme ataxin‐3." The EMBO Journal 28(4): 372-382. <http://hdl.handle.net/2027.42/102210>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102210
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherUbiquitinen_US
dc.subject.otherAtaxin‐3en_US
dc.subject.otherDeubiquitinating Enzymeen_US
dc.subject.otherPost‐Translational Modificationen_US
dc.subject.otherSpinocerebellar Ataxia Type 3en_US
dc.titleUbiquitination directly enhances activity of the deubiquitinating enzyme ataxin‐3en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid19153604en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102210/1/emboj2008289-sup-0001.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102210/2/emboj2008289.pdf
dc.identifier.doi10.1038/emboj.2008.289en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceStevanin G, Cassa E, Cancel G, Abbas N, Durr A, Jardim E, Agid Y, Sousa PS, Brice A ( 1995b ) Characterisation of the unstable expanded CAG repeat in the MJD1 gene in four Brazilian families of Portuguese descent with Machado–Joseph disease. J Med Genet 32: 827 – 830en_US
dc.identifier.citedreferencePaulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN ( 1997 ) Machado–Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol 41: 453 – 462en_US
dc.identifier.citedreferencePickart CM, Fushman D ( 2004 ) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8: 610 – 616en_US
dc.identifier.citedreferencePolo S, Sigismund S, Faretta M, Guidi M, Capua MR, Bossi G, Chen H, De Camilli P, Di Fiore PP ( 2002 ) A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416: 451 – 455en_US
dc.identifier.citedreferenceScaglione KM, Bansal PK, Deffenbaugh AE, Kiss A, Moore JM, Korolev S, Cocklin R, Goebl M, Kitagawa K, Skowyra D ( 2007 ) SCF E3‐mediated autoubiquitination negatively regulates activity of Cdc34 E2 but plays a nonessential role in the catalytic cycle in vitro and in vivo. Mol Cell Biol 27: 5860 – 5870en_US
dc.identifier.citedreferenceShekhtman A, Cowburn D ( 2002 ) A ubiquitin‐interacting motif from Hrs binds to and occludes the ubiquitin surface necessary for polyubiquitination in monoubiquitinated proteins. Biochem Biophys Res Commun 296: 1222 – 1227en_US
dc.identifier.citedreferenceShen C, Ye Y, Robertson SE, Lau AW, Mak DO, Chou MM ( 2005 ) Calcium/calmodulin regulates ubiquitination of the ubiquitin‐specific protease TRE17/USP6. J Biol Chem 280: 35967 – 35973en_US
dc.identifier.citedreferenceShoesmith Berke SJ, Chai Y, Marrs GL, Wen H, Paulson HL ( 2005 ) Defining the role of ubiquitin interacting motifs in the polyglutamine disease protein, ataxin‐3. J Biol Chem 280: 32026 – 32034en_US
dc.identifier.citedreferenceStevanin G, Cancel G, Didierjean O, Durr A, Abbas N, Cassa E, Feingold J, Agid Y, Brice A ( 1995a ) Linkage disequilibrium at the Machado–Joseph disease/spinal cerebellar ataxia 3 locus: evidence for a common founder effect in French and Portuguese–Brazilian families as well as a second ancestral Portuguese–Azorean mutation. Am J Hum Genet 57: 1247 – 1250en_US
dc.identifier.citedreferenceTan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP, Ho MW, Troncoso J, Gygi SP, Lee MK, Dawson VL, Dawson TM, Lim KL ( 2007 ) Lysine 63‐linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17: 431 – 439en_US
dc.identifier.citedreferenceThrower JS, Hoffman L, Rechsteiner M, Pickart CM ( 2000 ) Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94 – 102en_US
dc.identifier.citedreferenceTodi SV, Laco MN, Winborn BJ, Travis SM, Wen HM, Paulson HL ( 2007a ) Cellular turnover of the polyglutamine disease protein ataxin‐3 is regulated by its catalytic activity. J Biol Chem 282: 29348 – 29358en_US
dc.identifier.citedreferenceTodi SV, Williams A, Paulson H ( 2007b ) Polyglutamine repeat disorders, including Huntington's disease. In Molecular Neurology Waxman SG (ed), pp 257 – 276. London: Academic Pressen_US
dc.identifier.citedreferenceVentii KH, Wilkinson KD ( 2008 ) Protein partners of deubiquitinating enzymes. Biochem J 414: 161 – 175en_US
dc.identifier.citedreferenceVugmeyster Y, Borodovsky A, Maurice MM, Maehr R, Furman MH, Ploegh HL ( 2002 ) The ubiquitin‐proteasome pathway in thymocyte apoptosis: caspase‐dependent processing of the deubiquitinating enzyme USP7 (HAUSP). Mol Immunol 39: 431 – 441en_US
dc.identifier.citedreferenceWada K, Kamitani T ( 2006 ) UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun 342: 253 – 258en_US
dc.identifier.citedreferenceWang G, Sawai N, Kotliarova S, Kanazawa I, Nukina N ( 2000 ) Ataxin‐3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Hum Mol Genet 9: 1795 – 1803en_US
dc.identifier.citedreferenceWang Q, Li L, Ye Y ( 2006 ) Regulation of retrotranslocation by p97‐associated deubiquitinating enzyme ataxin‐3. J Cell Biol 174: 963 – 971en_US
dc.identifier.citedreferenceWarrick JM, Morabito LM, Bilen J, Gordesky‐Gold B, Faust LZ, Paulson HL, Bonini NM ( 2005 ) Ataxin‐3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin‐associated mechanism. Mol Cell 18: 37 – 48en_US
dc.identifier.citedreferenceWilliams AJ, Paulson HL ( 2008 ) Polyglutamine neurodegeneration: protein misfolding revisited. Trends Neurosci 31: 521 – 528en_US
dc.identifier.citedreferenceWinborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson HL ( 2008 ) The deubiquitinating enzyme ataxin‐3, a polyglutamine disease protein, edits K63‐linkages in mixed linkage ubiquitin chains. J Biol Chem 283: 26436 – 26443en_US
dc.identifier.citedreferenceYao T, Song L, Jin J, Cai Y, Takahashi H, Swanson SK, Washburn MP, Florens L, Conaway RC, Cohen RE, Conaway JW ( 2008 ) Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin‐remodeling complex. Mol Cell 31: 909 – 917en_US
dc.identifier.citedreferenceZhong X, Pittman RN ( 2006 ) Ataxin‐3 binds VCP/p97 and regulates retrotranslocation of ERAD substrates. Hum Mol Genet 15: 2409 – 2420en_US
dc.identifier.citedreferenceAmerik AY, Hochstrasser M ( 2004 ) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695: 189 – 207en_US
dc.identifier.citedreferenceArnason T, Ellison MJ ( 1994 ) Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Mol Cell Biol 14: 7876 – 7883en_US
dc.identifier.citedreferenceBowman AB, Lam YC, Jafar‐Nejad P, Chen HK, Richman R, Samaco RC, Fryer JD, Kahle JJ, Orr HT, Zoghbi HY ( 2007 ) Duplication of Atxn1l suppresses SCA1 neuropathology by decreasing incorporation of polyglutamine‐expanded ataxin‐1 into native complexes. Nat Genet 39: 373 – 379en_US
dc.identifier.citedreferenceBrzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE ( 2006 ) A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1‐directed ubiquitination. Mol Cell 21: 873 – 880en_US
dc.identifier.citedreferenceBurnett B, Li F, Pittman RN ( 2003 ) The polyglutamine neurodegenerative protein ataxin‐3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 12: 3195 – 3205en_US
dc.identifier.citedreferenceCemal CK, Carroll CJ, Lawrence L, Lowrie MB, Ruddle P, Al‐Mahdawi S, King RH, Pook MA, Huxley C, Chamberlain S ( 2002 ) YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet 11: 1075 – 1094en_US
dc.identifier.citedreferenceChai Y, Berke SS, Cohen RE, Paulson HL ( 2004 ) Poly‐ubiquitin binding by the polyglutamine disease protein ataxin‐3 links its normal function to protein surveillance pathways. J Biol Chem 279: 3605 – 3611en_US
dc.identifier.citedreferenceChen ZJ ( 2005 ) Ubiquitin signalling in the NF‐kappaB pathway. Nat Cell Biol 7: 758 – 765en_US
dc.identifier.citedreferenceChow MK, Ellisdon AM, Cabrita LD, Bottomley SP ( 2006 ) Purification of polyglutamine proteins. Methods Enzymol 413: 1 – 19en_US
dc.identifier.citedreferenceDeng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ ( 2000 ) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin‐conjugating enzyme complex and a unique polyubiquitin chain. Cell 103: 351 – 361en_US
dc.identifier.citedreferenceDoss‐Pepe EW, Stenroos ES, Johnson WG, Madura K ( 2003 ) Ataxin‐3 interactions with rad23 and valosin‐containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin‐mediated proteolysis. Mol Cell Biol 23: 6469 – 6483en_US
dc.identifier.citedreferenceDuda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA ( 2008 ) Structural insights into NEDD8 activation of Cullin‐RING ligases: conformational control of conjugation. Cell 134: 995 – 1006en_US
dc.identifier.citedreferenceEllisdon AM, Thomas B, Bottomley SP ( 2006 ) The two‐stage pathway of ataxin‐3 fibrillogenesis involves a polyglutamine‐independent step. J Biol Chem 281: 16888 – 16896en_US
dc.identifier.citedreferenceFernandez‐Montalvan A, Bouwmeester T, Joberty G, Mader R, Mahnke M, Pierrat B, Schlaeppi JM, Worpenberg S, Gerhartz B ( 2007 ) Biochemical characterization of USP7 reveals post‐translational modification sites and structural requirements for substrate processing and subcellular localization. FEBS J 274: 4256 – 4270en_US
dc.identifier.citedreferenceGatchel JR, Zoghbi HY ( 2005 ) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6: 743 – 755en_US
dc.identifier.citedreferenceHofmann RM, Pickart CM ( 1999 ) Noncanonical MMS2‐encoded ubiquitin‐conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96: 645 – 653en_US
dc.identifier.citedreferenceHuang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D‧Andrea AD ( 2006 ) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8: 339 – 347en_US
dc.identifier.citedreferenceKawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A ( 1994 ) CAG expansions in a novel gene for Machado–Joseph disease at chromosome 14q32.1. Nat Genet 8: 221 – 228en_US
dc.identifier.citedreferenceKlapisz E, Sorokina I, Lemeer S, Pijnenburg M, Verkleij AJ, van Bergen en Henegouwen PM ( 2002 ) A ubiquitin‐interacting motif (UIM) is essential for Eps15 and Eps15R ubiquitination. J Biol Chem 277: 30746 – 30753en_US
dc.identifier.citedreferenceKnipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A, Johnson ES, Mann M, Sixma TK, Pichler A ( 2008 ) Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell 31: 371 – 382en_US
dc.identifier.citedreferenceLam YC, Bowman AB, Jafar‐Nejad P, Lim J, Richman R, Fryer JD, Hyun ED, Duvick LA, Orr HT, Botas J, Zoghbi HY ( 2006 ) ATAXIN‐1 interacts with the repressor Capicua in its native complex to cause SCA1 neuropathology. Cell 127: 1335 – 1347en_US
dc.identifier.citedreferenceLim J, Crespo‐Barreto J, Jafar‐Nejad P, Bowman AB, Richman R, Hill DE, Orr HT, Zoghbi HY ( 2008 ) Opposing effects of polyglutamine expansion on native protein complexes contribute to SCA1. Nature 452: 713 – 718en_US
dc.identifier.citedreferenceLim KL, Dawson VL, Dawson TM ( 2005 ) Parkin‐mediated lysine 63‐linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases? Neurobiol Aging 27: 524 – 529en_US
dc.identifier.citedreferenceMao Y, Senic‐Matuglia F, Di Fiore PP, Polo S, Hodsdon ME, De Camilli P ( 2005 ) Deubiquitinating function of ataxin‐3: insights from the solution structure of the Josephin domain. Proc Natl Acad Sci USA 102: 12700 – 12705en_US
dc.identifier.citedreferenceMatsumoto M, Yada M, Hatakeyama S, Ishimoto H, Tanimura T, Tsuji S, Kakizuka A, Kitagawa M, Nakayama KI ( 2004 ) Molecular clearance of ataxin‐3 is regulated by a mammalian E4. EMBO J 23: 659 – 669en_US
dc.identifier.citedreferenceMeray RK, Lansbury Jr PT ( 2007 ) Reversible monoubiquitination regulates the Parkinson's disease‐associated ubiquitin hydrolase UCH‐L1. J Biol Chem 282: 10567 – 10575en_US
dc.identifier.citedreferenceMeulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F ( 2008 ) Mechanism and consequences for paralog‐specific sumoylation of ubiquitin‐specific protease 25. Mol Cell 30: 610 – 619en_US
dc.identifier.citedreferenceMiller SL, Malotky E, O‧Bryan JP ( 2004 ) Analysis of the role of ubiquitin‐interacting motifs in ubiquitin binding and ubiquitylation. J Biol Chem 279: 33528 – 33537en_US
dc.identifier.citedreferenceNicastro G, Menon RP, Masino L, Knowles PP, McDonald NQ, Pastore A ( 2005 ) The solution structure of the Josephin domain of ataxin‐3: structural determinants for molecular recognition. Proc Natl Acad Sci USA 102: 10493 – 10498en_US
dc.identifier.citedreferenceNijman SM, Luna‐Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R ( 2005 ) A genomic and functional inventory of deubiquitinating enzymes. Cell 123: 773 – 786en_US
dc.identifier.citedreferenceOldham CE, Mohney RP, Miller SL, Hanes RN, O‧Bryan JP ( 2002 ) The ubiquitin‐interacting motifs target the endocytic adaptor protein epsin for ubiquitination. Curr Biol 12: 1112 – 1116en_US
dc.identifier.citedreferenceParry G, Estelle M ( 2004 ) Regulation of cullin‐based ubiquitin ligases by the Nedd8/RUB ubiquitin‐like proteins. Semin Cell Dev Biol 15: 221 – 229en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.