Show simple item record

FGF‐20 and DKK1 are transcriptional targets of β‐catenin and FGF‐20 is implicated in cancer and development

dc.contributor.authorChamorro, Mario Nen_US
dc.contributor.authorSchwartz, Donald Ren_US
dc.contributor.authorVonica, Alinen_US
dc.contributor.authorBrivanlou, Ali Hen_US
dc.contributor.authorCho, Kathleen Ren_US
dc.contributor.authorVarmus, Harold Een_US
dc.date.accessioned2014-01-08T20:35:06Z
dc.date.available2014-01-08T20:35:06Z
dc.date.issued2005-01-12en_US
dc.identifier.citationChamorro, Mario N; Schwartz, Donald R; Vonica, Alin; Brivanlou, Ali H; Cho, Kathleen R; Varmus, Harold E (2005). "FGF‐20 and DKK1 are transcriptional targets of β‐catenin and FGF‐20 is implicated in cancer and development." The EMBO Journal 24(1): 73-84. <http://hdl.handle.net/2027.42/102233>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102233
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherXenopus Laevisen_US
dc.subject.otherβ‐Cateninen_US
dc.subject.otherDKK1en_US
dc.subject.otherFGF‐20en_US
dc.subject.otherWnt Signalingen_US
dc.titleFGF‐20 and DKK1 are transcriptional targets of β‐catenin and FGF‐20 is implicated in cancer and developmenten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid15592430en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102233/1/emboj7600460.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102233/2/emboj7600460-sup-0001.pdf
dc.identifier.doi10.1038/sj.emboj.7600460en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceSemenov MV, Tamai K, Brott BK, Kuhl M, Sokol S, He X ( 2001 ) Head inducer Dickkopf‐1 is a ligand for Wnt coreceptor LRP6. Curr Biol 11: 951 – 961en_US
dc.identifier.citedreferenceSchohl A, Fagotto F ( 2003 ) A role for maternal beta‐catenin in early mesoderm induction in Xenopus. EMBO J 22: 3303 – 3313en_US
dc.identifier.citedreferenceSchwartz DR, Wu R, Kardia SL, Levin AM, Huang CC, Shedden KA, Kuick R, Misek DE, Hanash SM, Taylor JM, Reed H, Hendrix N, Zhai Y, Fearon ER, Cho KR ( 2003 ) Novel candidate targets of beta‐catenin/T‐cell factor signaling identified by gene expression profiling of ovarian endometrioid adenocarcinomas. Cancer Res 63: 2913 – 2922en_US
dc.identifier.citedreferenceShimokawa T, Furukawa Y, Sakai M, Li M, Miwa N, Lin YM, Nakamura Y ( 2003 ) Involvement of the FGF18 gene in colorectal carcinogenesis, as a novel downstream target of the beta‐catenin/T‐cell factor complex. Cancer Res 63: 6116 – 6120en_US
dc.identifier.citedreferenceShtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben‐Ze'ev A ( 1999 ) The cyclin D1 gene is a target of the beta‐catenin/LEF‐1 pathway. Proc Natl Acad Sci USA 96: 5522 – 5527en_US
dc.identifier.citedreferenceSmith JC, Price BM, Green JB, Weigel D, Herrmann BG ( 1991 ) Expression of a Xenopus homolog of Brachyury (T) is an immediate‐early response to mesoderm induction. Cell 67: 79 – 87en_US
dc.identifier.citedreferenceSpiegelman VS, Slaga TJ, Pagano M, Minamoto T, Ronai Z, Fuchs SY ( 2000 ) Wnt/beta‐catenin signaling induces the expression and activity of betaTrCP ubiquitin ligase receptor. Mol Cell 5: 877 – 882en_US
dc.identifier.citedreferenceStaal FJ, Weerkamp F, Baert MR, van den Burg CM, van Noort M, de Haas EF, van Dongen JJ ( 2004 ) Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion. J Immunol 172: 1099 – 1108en_US
dc.identifier.citedreferenceTago K, Nakamura T, Nishita M, Hyodo J, Nagai S, Murata Y, Adachi S, Ohwada S, Morishita Y, Shibuya H, Akiyama T ( 2000 ) Inhibition of Wnt signaling by ICAT, a novel beta‐catenin‐interacting protein. Genes Dev 14: 1741 – 1749en_US
dc.identifier.citedreferenceTetsu O, McCormick F ( 1999 ) Beta‐catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422 – 426en_US
dc.identifier.citedreferenceTian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy Jr JD ( 2003 ) The role of the Wnt‐signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349: 2483 – 2494en_US
dc.identifier.citedreferencevan de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon‐Pon‐Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H ( 2002 ) The beta‐catenin/TCF‐4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111: 241 – 250en_US
dc.identifier.citedreferenceVonica A, Gumbiner BM ( 2002 ) Zygotic Wnt activity is required for Brachyury expression in the early Xenopus laevis embryo. Dev Biol 250: 112 – 127en_US
dc.identifier.citedreferenceVonica A, Weng W, Gumbiner BM, Venuti JM ( 2000 ) TCF is the nuclear effector of the beta‐catenin signal that patterns the sea urchin animal–vegetal axis. Dev Biol 217: 230 – 243en_US
dc.identifier.citedreferenceWeinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ ( 2001 ) Use of chromatin immunoprecipitation to clone novel E2F target promoters. Mol Cell Biol 21: 6820 – 6832en_US
dc.identifier.citedreferenceWilding J, Straub J, Bee J, Churchman M, Bodmer W, Dickson C, Tomlinson I, Ilyas M ( 2002 ) Cyclin D1 is not an essential target of beta‐catenin signaling during intestinal tumorigenesis, but it may act as a modifier of disease severity in multiple intestinal neoplasia (Min) mice. Cancer Res 62: 4562 – 4565en_US
dc.identifier.citedreferenceWillert J, Epping M, Pollack JR, Brown PO, Nusse R ( 2002 ) A transcriptional response to Wnt protein in human embryonic carcinoma cells. BMC Dev Biol 2: 8en_US
dc.identifier.citedreferenceWu R, Zhai Y, Fearon ER, Cho KR ( 2001 ) Diverse mechanisms of beta‐catenin deregulation in ovarian endometrioid adenocarcinomas. Cancer Res 61: 8247 – 8255en_US
dc.identifier.citedreferenceZorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE ( 1999 ) Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta‐catenin. Mol Cell 4: 487 – 498en_US
dc.identifier.citedreferenceBox GEP, Hunter WG, Hunter JS ( 1978 ) Statistics for Experimenters. New York: John Wiley and Sonsen_US
dc.identifier.citedreferenceKolligs FT, Nieman MT, Winer I, Hu G, Van Mater D, Feng Y, Smith IM, Wu R, Zhai Y, Cho KR, Fearon ER ( 2002 ) ITF‐2, a downstream target of the Wnt/TCF pathway, is activated in human cancers with beta‐catenin defects and promotes neoplastic transformation. Cancer Cell 1: 145 – 155en_US
dc.identifier.citedreferenceMilliken GA, Johnson DE ( 1984 ) Analysis of Messy Data, vol 1: Designed Experiments. Belmont, CA: Wadsworth, Inc.en_US
dc.identifier.citedreferencePowers CJ, McLeskey SW, Wellstein A ( 2000 ) Fibroblast growth factors, their receptors and signaling. Endocr Relat Cancer 7: 165 – 197en_US
dc.identifier.citedreferenceBienz M, Clevers H ( 2000 ) Linking colorectal cancer to Wnt signaling. Cell 103: 311 – 320en_US
dc.identifier.citedreferenceBrannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D ( 1997 ) A beta‐catenin/XTcf‐3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11: 2359 – 2370en_US
dc.identifier.citedreferenceBrummelkamp TR, Bernards R, Agami R ( 2002 ) A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550 – 553en_US
dc.identifier.citedreferenceCarnac G, Kodjabachian L, Gurdon JB, Lemaire P ( 1996 ) The homeobox gene Siamois is a target of the Wnt dorsalisation pathway and triggers organiser activity in the absence of mesoderm. Development 122: 3055 – 3065en_US
dc.identifier.citedreferenceChristian JL, McMahon JA, McMahon AP, Moon RT ( 1991 ) Xwnt‐8, a Xenopus Wnt‐1/int‐1‐related gene responsive to mesoderm‐inducing growth factors, may play a role in ventral mesodermal patterning during embryogenesis. Development 111: 1045 – 1055en_US
dc.identifier.citedreferenceConacci‐Sorrell ME, Ben‐Yedidia T, Shtutman M, Feinstein E, Einat P, Ben‐Ze'ev A ( 2002 ) Nr‐CAM is a target gene of the beta‐catenin/LEF‐1 pathway in melanoma and colon cancer and its expression enhances motility and confers tumorigenesis. Genes Dev 16: 2058 – 2072en_US
dc.identifier.citedreferenceDarken RS, Wilson PA ( 2001 ) Axis induction by wnt signaling: target promoter responsiveness regulates competence. Dev Biol 234: 42 – 54en_US
dc.identifier.citedreferenceDhulipal PD ( 1997 ) Ets oncogene family. Indian J Exp Biol 35: 315 – 322en_US
dc.identifier.citedreferenceDickson C, Spencer‐Dene B, Dillon C, Fantl V ( 2000 ) Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res 2: 191 – 196en_US
dc.identifier.citedreferenceDunn KJ, Williams BO, Li Y, Pavan WJ ( 2000 ) Neural crest‐directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci USA 97: 10050 – 10055en_US
dc.identifier.citedreferenceFisher GH, Orsulic S, Holland E, Hively WP, Li Y, Lewis BC, Williams BO, Varmus HE ( 1999 ) Development of a flexible and specific gene delivery system for production of murine tumor models. Oncogene 18: 5253 – 5260en_US
dc.identifier.citedreferenceGlinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C ( 1998 ) Dickkopf‐1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357 – 362en_US
dc.identifier.citedreferenceGrotewold L, Ruther U ( 2002 ) The Wnt antagonist Dickkopf‐1 is regulated by Bmp signaling and c‐Jun and modulates programmed cell death. EMBO J 21: 966 – 975en_US
dc.identifier.citedreferenceHacein‐Bey‐Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergerst U, Frebourg T, Aurias A, Stoppa‐Lyonnet D, Romana S, Radford‐Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, Soulier J, Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzana‐Calvo M ( 2003 ) LMO2‐associated clonal T cell proliferation in two patients after gene therapy for SCID‐X1. Science 302: 415 – 419en_US
dc.identifier.citedreferenceHamilton FS, Wheeler GN, Hoppler S ( 2001 ) Difference in XTcf‐3 dependency accounts for change in response to beta‐catenin‐mediated Wnt signalling in Xenopus blastula. Development 128: 2063 – 2073en_US
dc.identifier.citedreferenceHarland R, Gerhart J ( 1997 ) Formation and function of Spemann's organizer. Annu Rev Cell Dev Biol 13: 611 – 667en_US
dc.identifier.citedreferenceHe TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW ( 1998 ) Identification of c‐MYC as a target of the APC pathway. Science 281: 1509 – 1512en_US
dc.identifier.citedreferenceHecht A, Kemler R ( 2000 ) Curbing the nuclear activities of beta‐catenin. Control over Wnt target gene expression. EMBO Rep 1: 24 – 28en_US
dc.identifier.citedreferenceHimly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK ( 1998 ) The DF‐1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248: 295 – 304en_US
dc.identifier.citedreferenceHolland EC ( 2000 ) A mouse model for glioma: biology, pathology, and therapeutic opportunities. Toxicol Pathol 28: 171 – 177en_US
dc.identifier.citedreferenceHoppler S, Brown JD, Moon RT ( 1996 ) Expression of a dominant‐negative Wnt blocks induction of MyoD in Xenopus embryos. Genes Dev 10: 2805 – 2817en_US
dc.identifier.citedreferenceHuelsken J, Behrens J ( 2002 ) The Wnt signalling pathway. J Cell Sci 115: 3977 – 3978en_US
dc.identifier.citedreferenceHuelsken J, Birchmeier W ( 2001 ) New aspects of Wnt signaling pathways in higher vertebrates. Curr Opin Genet Dev 11: 547 – 553en_US
dc.identifier.citedreferenceIsaacs HV, Pownall ME, Slack JM ( 1994 ) eFGF regulates Xbra expression during Xenopus gastrulation. EMBO J 13: 4469 – 4481en_US
dc.identifier.citedreferenceJeffers M, Shimkets R, Prayaga S, Boldog F, Yang M, Burgess C, Fernandes E, Rittman B, Shimkets J, LaRochelle WJ, Lichenstein HS ( 2001 ) Identification of a novel human fibroblast growth factor and characterization of its role in oncogenesis. Cancer Res 61: 3131 – 3138en_US
dc.identifier.citedreferenceJho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F ( 2002 ) Wnt/beta‐catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22: 1172 – 1183en_US
dc.identifier.citedreferenceKawano Y, Kypta R ( 2003 ) Secreted antagonists of the Wnt signalling pathway. J Cell Sci 116: 2627 – 2634en_US
dc.identifier.citedreferenceKessler DS ( 1997 ) Siamois is required for formation of Spemann's organizer. Proc Natl Acad Sci USA 94: 13017 – 13022en_US
dc.identifier.citedreferenceKielman MF, Rindapaa M, Gaspar C, van Poppel N, Breukel C, van Leeuwen S, Taketo MM, Roberts S, Smits R, Fodde R ( 2002 ) Apc modulates embryonic stem‐cell differentiation by controlling the dosage of beta‐catenin signaling. Nat Genet 32: 594 – 605en_US
dc.identifier.citedreferenceKofron M, Demel T, Xanthos J, Lohr J, Sun B, Sive H, Osada S, Wright C, Wylie C, Heasman J ( 1999 ) Mesoderm induction in Xenopus is a zygotic event regulated by maternal VegT via TGFbeta growth factors. Development 126: 5759 – 5770en_US
dc.identifier.citedreferenceKoga C, Adati N, Nakata K, Mikoshiba K, Furuhata Y, Sato S, Tei H, Sakaki Y, Kurokawa T, Shiokawa K, Yokoyama KK ( 1999 ) Characterization of a novel member of the FGF family, XFGF‐20, in Xenopus laevis. Biochem Biophys Res Commun 261: 756 – 765en_US
dc.identifier.citedreferenceKolligs FT, Hu G, Dang CV, Fearon ER ( 1999 ) Neoplastic transformation of RK3E by mutant beta‐catenin requires deregulation of Tcf/Lef transcription but not activation of c‐myc expression. Mol Cell Biol 19: 5696 – 5706en_US
dc.identifier.citedreferenceKratochwil K, Galceran J, Tontsch S, Roth W, Grosschedl R ( 2002 ) FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(−/−) mice. Genes Dev 16: 3173 – 3185en_US
dc.identifier.citedreferenceLerchner W, Latinkic BV, Remacle JE, Huylebroeck D, Smith JC ( 2000 ) Region‐specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127: 2729 – 2739en_US
dc.identifier.citedreferenceLeung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER ( 2002 ) Activation of AXIN2 expression by beta‐catenin‐T cell factor. A feedback repressor pathway regulating Wnt signaling. J Biol Chem 277: 21657 – 21665en_US
dc.identifier.citedreferenceMiller LD, Park KS, Guo QM, Alkharouf NW, Malek RL, Lee NH, Liu ET, Cheng SY ( 2001 ) Silencing of Wnt signaling and activation of multiple metabolic pathways in response to thyroid hormone‐stimulated cell proliferation. Mol Cell Biol 21: 6626 – 6639en_US
dc.identifier.citedreferenceMoser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN ( 1993 ) ApcMin, a mutation in the murine Apc gene, predisposes to mammary carcinomas and focal alveolar hyperplasias. Proc Natl Acad Sci USA 90: 8977 – 8981en_US
dc.identifier.citedreferenceMunemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P ( 1995 ) Regulation of intracellular beta‐catenin levels by the adenomatous polyposis coli (APC) tumor‐suppressor protein. Proc Natl Acad Sci USA 92: 3046 – 3050en_US
dc.identifier.citedreferenceOrlando V ( 2000 ) Mapping chromosomal proteins in vivo by formaldehyde‐crosslinked‐chromatin immunoprecipitation. Trends Biochem Sci 25: 99 – 104en_US
dc.identifier.citedreferenceOshima M, Oshima H, Kitagawa K, Kobayashi M, Itakura C, Taketo M ( 1995 ) Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc Natl Acad Sci USA 92: 4482 – 4486en_US
dc.identifier.citedreferenceOuko L, Ziegler TR, Gu LH, Eisenberg LM, Yang VW ( 2004 ) Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J Biol Chem 279: 26707 – 26715en_US
dc.identifier.citedreferencePeifer M, Polakis P ( 2000 ) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287: 1606 – 1609en_US
dc.identifier.citedreferencePolakis P ( 2000 ) Wnt signaling and cancer. Genes Dev 14: 1837 – 1851en_US
dc.identifier.citedreferenceRabbitts TH, Axelson H, Forster A, Grutz G, Lavenir I, Larson R, Osada H, Valge‐Archer V, Wadman I, Warren A ( 1997 ) Chromosomal translocations and leukaemia: a role for LMO2 in T cell acute leukaemia, in transcription and in erythropoiesis. Leukemia 11 ( Suppl 3 ): 271 – 272en_US
dc.identifier.citedreferenceRomagnolo B, Berrebi D, Saadi‐Keddoucci S, Porteu A, Pichard AL, Peuchmaur M, Vandewalle A, Kahn A, Perret C ( 1999 ) Intestinal dysplasia and adenoma in transgenic mice after overexpression of an activated beta‐catenin. Cancer Res 59: 3875 – 3879en_US
dc.identifier.citedreferenceRousset R, Mack JA, Wharton Jr KA, Axelrod JD, Cadigan KM, Fish MP, Nusse R, Scott MP ( 2001 ) Naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes Dev 15: 658 – 671en_US
dc.identifier.citedreferenceRubinfeld B, Souza B, Albert I, Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P ( 1993 ) Association of the APC gene product with beta‐catenin. Science 262: 1731 – 1734en_US
dc.identifier.citedreferenceRutzky LP, Giovanella BC, Tom BH, Kaye CI, Noguchi PD, Kahan BD ( 1983 ) Characterization of a human colonic adenocarcinoma cell line, LS123. In vitro 19: 99 – 107en_US
dc.identifier.citedreferenceSchaefer‐Klein J, Givol I, Barsov EV, Whitcomb JM, VanBrocklin M, Foster DN, Federspiel MJ, Hughes SH ( 1998 ) The EV‐O‐derived cell line DF‐1 supports the efficient replication of avian leukosis‐sarcoma viruses and vectors. Virology 248: 305 – 311en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.