Show simple item record

Roll‐to‐Roll Cohesive, Coated, Flexible, High‐Efficiency Polymer Light‐Emitting Diodes Utilizing ITO‐Free Polymer Anodes

dc.contributor.authorShin, Seongbeomen_US
dc.contributor.authorYang, Minyangen_US
dc.contributor.authorGuo, L. Jayen_US
dc.contributor.authorYoun, Hongseoken_US
dc.date.accessioned2014-01-08T20:35:10Z
dc.date.available2015-02-03T16:14:40Zen_US
dc.date.issued2013-12-09en_US
dc.identifier.citationShin, Seongbeom; Yang, Minyang; Guo, L. Jay; Youn, Hongseok (2013). "Roll‐to‐Roll Cohesive, Coated, Flexible, High‐Efficiency Polymer Light‐Emitting Diodes Utilizing ITO‐Free Polymer Anodes." Small 9(23): 4036-4044.en_US
dc.identifier.issn1613-6810en_US
dc.identifier.issn1613-6829en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102247
dc.description.abstractThis paper reports solution‐processed, high‐efficiency polymer light‐emitting diodes fabricated by a new type of roll‐to‐roll coating method under ambient air conditions. A noble roll‐to‐roll cohesive coating system utilizes only natural gravity and the surface tension of the solution to flow out from the capillary to the surface of the substrate. Because this mechanism uses a minimally cohesive solution, the roll‐to‐roll cohesive coating can effectively realize an ultra‐thin film thickness for the electron injection layer. In addition, the roll‐to‐roll cohesive coating enables the fabrication of a thicker polymer anode film more than 250 nm at one time by modification of the surface energy and without wasting the solution. It is observed that the standard sheet resistance deviation of the polymer anode is only 2.32 Ω/□ over 50 000 bending cycles. The standard sheet resistance deviation of the polymer anode in the different bending angles (0 to 180°) is 0.313 Ω/□, but the case of the ITO‐PET is 104.93 Ω/□. The average surface roughness of the polymer anode measured by atomic force microscopy is only 1.06 nm. Because the surface of the polymer anode has a better quality, the leakage current of the polymer light‐emitting diodes (PLEDs) using the polymer anode is much lower than that using the ITO‐PET substrate. The luminous power efficiency of the two devices is 4.13 lm/W for the polymer anode and 3.21 lm/W for the ITO‐PET. Consequently, the PLEDs made by using the polymer anode exhibited 28% enhanced performance because the polymer anode represents not only a higher transparency than the ITO‐PET in the wavelength of 560 nm but also greatly reduced roughness. The optimized the maximum current efficiency and power efficiency of the device show around 6.1 cd/A and 5.1 lm/W, respectively, which is comparable to the case of using the ITO‐glass. This roll‐to‐roll cohesive coating method utilizes only the natural gravity and cohesive force of the solutions. The coating film thickness can be effectively reduced for the ultra‐thin electron injection layer. Furthermore, the roll‐to‐roll cohesive coating enables the fabrication of a thicker polymer anode more than 250 nm at one time by modification of the surface energy and without wasting the solution.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherHigh‐Efficiencyen_US
dc.subject.otherPolymer Light‐Emitting Diodesen_US
dc.subject.otherNanofilm Castingen_US
dc.subject.otherRoll‐To‐Roll Processesen_US
dc.subject.otherPolymer Anodesen_US
dc.titleRoll‐to‐Roll Cohesive, Coated, Flexible, High‐Efficiency Polymer Light‐Emitting Diodes Utilizing ITO‐Free Polymer Anodesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan, 48109, USAen_US
dc.contributor.affiliationotherDepartment of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 373‐1 Guseong‐dong, Yuseong‐gu, Daejeon, 305‐701, South Koreaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102247/1/smll_201300382_sm_suppl.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102247/2/4036_ftp.pdf
dc.identifier.doi10.1002/smll.201300382en_US
dc.identifier.sourceSmallen_US
dc.identifier.citedreferenceB. H. Lee, S. H. Park, H. Back, K. Lee, Adv. Funct. Mater. 2011, 21, 487 – 493.en_US
dc.identifier.citedreferenceJ. Chung, B. Choi, H. H. Lee, Appl. Phys. Lett. 1999, 74, 3645 – 3647.en_US
dc.identifier.citedreferenceY. Yang, A. J. Heeger, Appl. Phys. Lett. 1994, 64, 1245 – 1247.en_US
dc.identifier.citedreferenceJ. Ouyang, C. W. Chu, F. C. Chen, Q. Xu, Y. Yang, Adv. Funct. Mater. 2005, 15, 203 – 208.en_US
dc.identifier.citedreferenceP. A. Levermore, R. Jin, X. Wang, L. Chen, D. D. C. Bradley, J. C. de Mello, J. Mater. Chem. 2008, 18, 4414 – 4420.en_US
dc.identifier.citedreferenceW. H. Kim, A. J. Makinen, N. Nikolov, R. Shashidhar, H. Kim, Z. H. Kafafi, Appl. Phys. Lett. 2002, 80, 3844 – 3846.en_US
dc.identifier.citedreferenceC. J. Liang, H. Zou, Z. Q. He, C. X. Zhang, D. Li, Y. S. Wang, Chin. Phys. Lett. 2010, 27, 097801.en_US
dc.identifier.citedreferenceP. Kopola, M. Tuomikoski, R. Suhonen, A. Maaninen, Thin Solid Films 2009, 517, 5757 – 5762.en_US
dc.identifier.citedreferenceD.‐H. Lee, J. S. Choi, H. Chae, C.‐H. Chung, S. M. Cho, Displays 2008, 29, 436 – 439.en_US
dc.identifier.citedreferenceJ. Alstrup, M. Jørgensen, A. J. Medford, F. C. Krebs, ACS Appl. Mater. Interfaces 2010, 2, 2819 – 2827.en_US
dc.identifier.citedreferenceQ. Xu, J. Ouyang, Y. Yang, Appl. Phys. Lett. 2003, 83, 4695 – 4697.en_US
dc.identifier.citedreferenceJ. Huang, G. Li, E. Wu, Q. Xu, Y. Yang, Adv. Mater. 2006, 18, 114 – 117.en_US
dc.identifier.citedreferenceH. Wu, F. Huang, Y. Mo, W. Yang, D. Wang, J. Peng, Y. Cao, Adv. Mater. 2004, 16, 1826 – 1830.en_US
dc.identifier.citedreferenceY. Zhang, F. Huang, Y. Chi, A. K. Y. Jen, Adv. Mater. 2008, 20, 1565 – 1570.en_US
dc.identifier.citedreferenceS. H. Oh, D. Vak, S. I. Na, T. W. Lee, D. Y. Kim, Adv. Mater. 2008, 20, 1624 – 1629.en_US
dc.identifier.citedreferenceH. Youn, M. Yang, Appl. Phys. Lett. 2010, 97, 243302.en_US
dc.identifier.citedreferenceS. R. Tseng, H. F. Meng, K. C. Lee, S. F. Horng, Appl. Phys. Lett. 2008, 93, 153308.en_US
dc.identifier.citedreferenceC. Y. Chen, H. W. Chang, Y. F. Chang, B. J. Chang, Y. S. Lin, P. S. Jian, H. C. Yeh, H. T. Chien, E. C. Chen, Y. C. Chao, H. F. Meng, H. W. Zan, H. W. Lin, S. F. Horng, Y. J. Cheng, F. W. Yen, I. F. Lin, H. Y. Yang, K. J. Huang, J. Appl. Phys. 2011, 110, 094501.en_US
dc.identifier.citedreferenceA. Sandstrom, H. F. Dam, F. C. Krebs, L. Edman, Nat. Commun. 2012, 3, 1002.en_US
dc.identifier.citedreferenceJ. Alstrup, M. Jørgensen, A. J. Medford, F. C. Krebs, ACS Appl. Mater. Interfaces. 2010, 2, 2819 – 2827.en_US
dc.identifier.citedreferenceR. L. Bruce, F. Weilnboeck, T. Lin, R. J. Phaneuf, G. S. Oehrlein, B. K. Long, C. G. Wilson, J. J. Vegh, D. Nest, D. B. Graves, J. of Appl. Phys. 2010, 107, 084310.en_US
dc.identifier.citedreferenceK. B. Kim, Y. H. Tak, Y. S. Han, K. H. Baik, M. H. Yoon, M. H. Lee, Jap. J. of Appl. Phys. 2003, 42, L438 – L440.en_US
dc.identifier.citedreferenceZ. Wang, S. Naka, H. Okada, Thin Solid Films. 2009, 518, 497 – 500.en_US
dc.identifier.citedreferenceY. Zhang, F. Huang, Y. Chi, A. K. Y. Jen, Adv. Mater. 2008, 20, 1565 – 1570.en_US
dc.identifier.citedreferenceT. Ye, S. Shao, J. Chen, L. Wang, D. Ma, ACS Appl. Mater. Interfaces. 2011, 3, 410 – 416.en_US
dc.identifier.citedreferenceW. J. E. Beek, M. M. Wienk, M. Kemerink, X. Yang, R. A. J. Janssen, J. Phys. Chem. B. 2005, 109, 9505.en_US
dc.identifier.citedreferenceZ. Chen, B. Cotterell, W. Wang, E. Guenther, S. Chua, Thin Solid Films 2001, 394, 201 – 205.en_US
dc.identifier.citedreferenceS. R. Forrest, Nature 2004, 428, 911 – 918.en_US
dc.identifier.citedreferenceS. T. Lee, Z. Q. Gao, L. S. Hung, Appl. Phys. Lett. 1999, 75, 1404 – 1406.en_US
dc.identifier.citedreferenceD. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, C. Zhou, Nano Lett. 2006, 6, 1880 – 1886.en_US
dc.identifier.citedreferenceJ. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, T. J. Marks, Nano Lett. 2006, 6, 2472 – 2477.en_US
dc.identifier.citedreferenceD. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482 – 1513.en_US
dc.identifier.citedreferenceZ. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mater. 2011, 23, 664 – 668.en_US
dc.identifier.citedreferenceL. Li, Z. Yu, W. Hu, C. H. Chang, Q. Chen, Q. Pei, Adv. Mater. 2011, 23, 5563 – 5567.en_US
dc.identifier.citedreferenceZ. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Adv. Mater. 2011, 23, 4453 – 4457.en_US
dc.identifier.citedreferenceY. M. Chang, L. Wang, W. F. Su, Org. Electron. 2008, 9, 968 – 973.en_US
dc.identifier.citedreferenceY. H. Ha, N. Nikolov, S. K. Pollack, J. Mastrangelo, B. D. Martin, R. Shashidhar, Adv. Funct. Mater. 2004, 14, 615 – 622.en_US
dc.identifier.citedreferenceJ. E. Yoo, K. S. Lee, A. Garcia, J. Tarver, E. D. Gomez, K. Baldwin, Y. Sun, H. Meng, T. Q. Nguyen, Y. L. Loo, Proc. Natl. Acad. Sci. USA 2010, 107, 5712 – 5717.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.