Show simple item record

Embryonic and fetal β‐globin gene repression by the orphan nuclear receptors, TR2 and TR4

dc.contributor.authorTanabe, Osamuen_US
dc.contributor.authorMcPhee, Daviden_US
dc.contributor.authorKobayashi, Shokoen_US
dc.contributor.authorShen, Yannanen_US
dc.contributor.authorBrandt, Williamen_US
dc.contributor.authorJiang, Xiaen_US
dc.contributor.authorCampbell, Andrew Den_US
dc.contributor.authorChen, Yei‐tsungen_US
dc.contributor.authorChang, Chawn shangen_US
dc.contributor.authorYamamoto, Masayukien_US
dc.contributor.authorTanimoto, Keijien_US
dc.contributor.authorEngel, James Douglasen_US
dc.date.accessioned2014-01-08T20:35:10Z
dc.date.available2014-01-08T20:35:10Z
dc.date.issued2007-05-02en_US
dc.identifier.citationTanabe, Osamu; McPhee, David; Kobayashi, Shoko; Shen, Yannan; Brandt, William; Jiang, Xia; Campbell, Andrew D; Chen, Yei‐tsung ; Chang, Chawn shang; Yamamoto, Masayuki; Tanimoto, Keiji; Engel, James Douglas (2007). "Embryonic and fetal βâ globin gene repression by the orphan nuclear receptors, TR2 and TR4." The EMBO Journal 26(9): 2295-2306. <http://hdl.handle.net/2027.42/102250>en_US
dc.identifier.issn0261-4189en_US
dc.identifier.issn1460-2075en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102250
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherβ‐Globin Switchingen_US
dc.subject.otherDREDen_US
dc.subject.otherRepressoren_US
dc.subject.otherTR2en_US
dc.subject.otherTR4en_US
dc.titleEmbryonic and fetal β‐globin gene repression by the orphan nuclear receptors, TR2 and TR4en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid17431400en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102250/1/emboj7601676.pdf
dc.identifier.doi10.1038/sj.emboj.7601676en_US
dc.identifier.sourceThe EMBO Journalen_US
dc.identifier.citedreferenceRaich N, Clegg CH, Grofti J, Romeo PH, Stamatoyannopoulos G ( 1995 ) GATA1 and YY1 are developmental repressors of the human ε‐globin gene. EMBO J 14: 801 – 809en_US
dc.identifier.citedreferenceLi J, Noguchi CT, Miller W, Hardison R, Schechter AN ( 1998a ) Multiple regulatory elements in the 5′‐flanking sequence of the human ε‐globin gene. J Biol Chem 273: 10202 – 10209en_US
dc.identifier.citedreferenceLi Q, Blau CA, Clegg CH, Rohde A, Stamatoyannopoulos G ( 1998b ) Multiple ε‐promoter elements participate in the developmental control of ε‐globin genes in transgenic mice. J Biol Chem 273: 17361 – 17367en_US
dc.identifier.citedreferenceLi Q, Clegg C, Peterson K, Shaw S, Raich N, Stamatoyannopoulos G ( 1997 ) Binary transgenic mouse model for studying the trans control of globin gene switching: evidence that GATA‐1 is an in vivo repressor of human ε gene expression. Proc Natl Acad Sci USA 94: 2444 – 2448en_US
dc.identifier.citedreferenceLi Q, Duan ZJ, Stamatoyannopoulos G ( 2001 ) Analysis of the mechanism of action of non‐deletion hereditary persistence of fetal hemoglobin mutants in transgenic mice. EMBO J 20: 157 – 164en_US
dc.identifier.citedreferenceMagram J, Chada K, Costantini F ( 1985 ) Developmental regulation of a cloned adult β‐globin gene in transgenic mice. Nature 315: 338 – 340en_US
dc.identifier.citedreferenceMedin JA, Minucci S, Driggers PH, Lee IJ, Ozato K ( 1994 ) Quantitative increases in DNA binding affinity and positional effects determine 9‐ cis retinoic acid induced activation of the retinoid X receptor β homodimer. Mol Cell Endocrinol 105: 27 – 35en_US
dc.identifier.citedreferenceMu X, Lee YF, Liu NC, Chen YT, Kim E, Shyr CR, Chang C ( 2004 ) Targeted inactivation of testicular nuclear orphan receptor 4 delays and disrupts late meiotic prophase and subsequent meiotic divisions of spermatogenesis. Mol Cell Biol 24: 5887 – 5899en_US
dc.identifier.citedreferenceNagy A, Gertsennstein M, Vintersten K, Behringer RR ( 2003 ) Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Pressen_US
dc.identifier.citedreferenceNavas PA, Peterson KR, Li Q, McArthur M, Stamatoyannopoulos G ( 2001 ) The 5′HS4 core element of the human β‐globin locus control region is required for high‐level globin gene expression in definitive but not in primitive erythropoiesis. J Mol Biol 312: 17 – 26en_US
dc.identifier.citedreferenceNavas PA, Peterson KR, Li Q, Skarpidi E, Rohde A, Shaw SE, Clegg CH, Asano H, Stamatoyannopoulos G ( 1998 ) Developmental specificity of the interaction between the locus control region and embryonic or fetal globin genes in transgenic mice with an HS3 core deletion. Mol Cell Biol 18: 4188 – 4196en_US
dc.identifier.citedreferenceOmori A, Tanabe O, Engel JD, Fukamizu A, Tanimoto K ( 2005 ) Adult stage γ‐globin silencing is mediated by a promoter direct repeat element. Mol Cell Biol 25: 3443 – 3451en_US
dc.identifier.citedreferenceOnodera K, Takahashi S, Nishimura S, Ohta J, Motohashi H, Yomogida K, Hayashi N, Engel JD, Yamamoto M ( 1997 ) GATA‐1 transcription is controlled by distinct regulatory mechanisms during primitive and definitive erythropoiesis. Proc Natl Acad Sci USA 94: 4487 – 4492en_US
dc.identifier.citedreferencePeters B, Merezhinskaya N, Diffley JF, Noguchi CT ( 1993 ) Protein–DNA interactions in the ε‐globin gene silencer. J Biol Chem 268: 3430 – 3437en_US
dc.identifier.citedreferencePlatt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, Klug PP ( 1994 ) Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med 330: 1639 – 1644en_US
dc.identifier.citedreferenceRaich N, Enver T, Nakamoto B, Josephson B, Papyannopoulou T, Stamatoyannopoulos G ( 1990 ) Autonomous developmental control of human embryonic globin gene switching in transgenic mice. Science 250: 1147 – 1149en_US
dc.identifier.citedreferenceRaich N, Papayannopoulou T, Stamatoyannopoulos G, Enver T ( 1992 ) Demonstration of a human ε‐globin gene silencer with studies in transgenic mice. Blood 79: 861 – 864en_US
dc.identifier.citedreferenceRonchi AE, Bottardi S, Mazzucchelli C, Ottolenghi S, Santoro C ( 1995 ) Differential binding of the NFE3 and CP1/NFY transcription factors to the human γ‐ and ε‐globin CCAAT boxes. J Biol Chem 270: 21934 – 21941en_US
dc.identifier.citedreferenceShyr CR, Collins LL, Mu XM, Platt KA, Chang C ( 2002 ) Spermatogenesis and testis development are normal in mice lacking testicular orphan nuclear receptor 2. Mol Cell Biol 22: 4661 – 4666en_US
dc.identifier.citedreferenceStamatoyannopoulos G, Grosveld F ( 2001 ) Hemoglobin Switching. Philadelphia, PA, USA: WB Saundersen_US
dc.identifier.citedreferenceSteinberg MH ( 2005 ) Predicting clinical severity in sickle cell anemia. Br J Haematol 129: 465 – 481en_US
dc.identifier.citedreferenceStuart MJ, Nagel RL ( 2004 ) Sickle‐cell disease. Lancet 364: 1343 – 1360en_US
dc.identifier.citedreferenceTanabe O, Katsuoka F, Campbell AD, Song W, Yamamoto M, Tanimoto K, Engel JD ( 2002 ) An embryonic/fetal β‐type globin gene repressor contains a nuclear receptor TR2/TR4 heterodimer. EMBO J 21: 3434 – 3442en_US
dc.identifier.citedreferenceTanimoto K, Liu Q, Bungert J, Engel JD ( 1999 ) Effects of altered gene order or orientation of the locus control region on human β‐globin gene expression in mice. Nature 398: 344 – 348en_US
dc.identifier.citedreferenceTanimoto K, Liu Q, Grosveld F, Bungert J, Engel JD ( 2000 ) Context‐dependent EKLF responsiveness defines the developmental specificity of the human ε‐globin gene in erythroid cells of YAC transgenic mice. Genes Dev 14: 2778 – 2794en_US
dc.identifier.citedreferenceTolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W ( 2002 ) Looping and interaction between hypersensitive sites in the active β‐globin locus. Mol Cell 10: 1453 – 1465en_US
dc.identifier.citedreferenceTownes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD ( 1985 ) Erythroid‐specific expression of human β‐globin genes in transgenic mice. EMBO J 4: 1715 – 1723en_US
dc.identifier.citedreferenceWhitelaw E, Tsai S‐F, Hogben P, Orkin SH ( 1990 ) Regulated expression of globin chains and the erythroid transcription factor GATA‐1 during erythropoiesis in the developing mouse. Mol Cell Biol 10: 6596 – 6606en_US
dc.identifier.citedreferenceZhao Q, Chasse SA, Devarakonda S, Sierk ML, Ahvazi B, Rastinejad F ( 2000 ) Structural basis of RXR–DNA interactions. J Mol Biol 296: 509 – 520en_US
dc.identifier.citedreferenceBehringer RR, Ryan TM, Palmiter RD, Brinster RL, Townes TM ( 1990 ) Human γ‐ to β‐globin gene switching in transgenic mice. Genes Dev 4: 380 – 389en_US
dc.identifier.citedreferenceBerry M, Grosveld F, Dillon N ( 1992 ) A single point mutation is the cause of the Greek form of hereditary persistence of fetal hemoglobin. Nature 358: 499 – 502en_US
dc.identifier.citedreferenceBungert J, Dave U, Lim KC, Lieuw KH, Shavit JA, Liu Q, Engel JD ( 1995 ) Synergistic regulation of human β‐globin gene switching by locus control region elements HS3 and HS4. Genes Dev 9: 3083 – 3096en_US
dc.identifier.citedreferenceBungert J, Tanimoto K, Patel S, Liu Q, Fear M, Engel JD ( 1999 ) Hypersensitive site 2 specifies a unique function within the human β‐globin locus control region to stimulate globin gene transcription. Mol Cell Biol 19: 3062 – 3072en_US
dc.identifier.citedreferenceCarter D, Chakalova L, Osborne CS, Dai YF, Fraser P ( 2002 ) Long‐range chromatin regulatory interactions in vivo. Nat Genet 32: 623 – 626en_US
dc.identifier.citedreferenceChen YT, Collins LL, Uno H, Chang C ( 2005 ) Deficits in motor coordination with aberrant cerebellar development in mice lacking testicular orphan nuclear receptor 4. Mol Cell Biol 25: 2722 – 2732en_US
dc.identifier.citedreferenceCheng Y, Prusoff WH ( 1973 ) Relationship between the inhibition constant ( K i ) and the concentration of inhibitor which causes 50 per cent inhibition ( I 50 ) of an enzymatic reaction. Biochem Pharmacol 22: 3099 – 3108en_US
dc.identifier.citedreferenceChoi OR, Engel JD ( 1988 ) Developmental regulation of β‐globin gene switching. Cell 55: 17 – 26en_US
dc.identifier.citedreferenceCollins LL, Lee YF, Heinlein CA, Liu NC, Chen YT, Shyr CR, Meshul CK, Uno H, Platt KA, Chang C ( 2004 ) Growth retardation and abnormal maternal behavior in mice lacking testicular orphan nuclear receptor 4. Proc Natl Acad Sci USA 101: 15058 – 15063en_US
dc.identifier.citedreferenceDillon N, Grosveld F ( 1991 ) Human γ‐globin genes silenced independently of other genes in the β‐globin locus. Nature 350: 252 – 254en_US
dc.identifier.citedreferenceEnver T, Raich N, Ebens AJ, Papayannopoulou T, Costantini F, Stamatoyannopoulos G ( 1990 ) Developmental regulation of human fetal‐to‐adult globin gene switching in transgenic mice. Nature 344: 309 – 313en_US
dc.identifier.citedreferenceFilipe A, Li Q, Deveaux S, Godin I, Romeo PH, Stamatoyannopoulos G, Mignotte V ( 1999 ) Regulation of embryonic/fetal globin genes by nuclear hormone receptors: a novel perspective on hemoglobin switching. EMBO J 18: 687 – 697en_US
dc.identifier.citedreferenceGlass CK, Rosenfeld MG ( 2000 ) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14: 121 – 141en_US
dc.identifier.citedreferenceGrosveld F, van Assendelft GB, Greaves DR, Kollias G ( 1987 ) Position‐independent, high‐level expression of the human β‐globin gene in transgenic mice. Cell 51: 975 – 985en_US
dc.identifier.citedreferenceHanscombe O, Whyatt D, Fraser P, Yannoutsos N, Greaves D, Dillon N, Grosveld F ( 1991 ) Importance of globin gene order for correct developmental expression. Genes Dev 5: 1387 – 1394en_US
dc.identifier.citedreferenceHuisman THJ, Carver MFH, Baysal E ( 1997 ) A Syllabus of Thalassemia Mutations. Augusta, GA, USA: The Sickle Cell Anemia Foundation http://globin.cse.psu.edu/globin/html/huisman/thals/IV-a.htmlen_US
dc.identifier.citedreferenceJiang G, Nepomuceno L, Yang Q, Sladek FM ( 1997 ) Serine/threonine phosphorylation of orphan receptor hepatocyte nuclear factor 4. Arch Biochem Biophys 340: 1 – 9en_US
dc.identifier.citedreferenceLaudet V ( 1997 ) Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor. J Mol Endocrinol 19: 207 – 226en_US
dc.identifier.citedreferenceLee YF, Lee HJ, Chang C ( 2002 ) Recent advances in the TR2 and TR4 orphan receptors of the nuclear receptor superfamily. J Steroid Biochem Mol Biol 81: 291 – 308en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.