Show simple item record

The Potential of Lightweight Materials and Advance Engines to Reduce Life Cycle Energy and Greenhouse Gas Emissions for ICVs and Evs Using Design Harmonization Techniques.

dc.contributor.authorLewis, Anne Marieen_US
dc.date.accessioned2014-01-16T20:40:49Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2014-01-16T20:40:49Z
dc.date.issued2013en_US
dc.date.submitted2013en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102298
dc.description.abstractLightweight materials and advanced combustion engines are being used with conventional and electrified vehicles to increase fuel economy, but such technologies may require more energy to produce and the impact of plug-in hybrid electric vehicles (PHEVs) is dependent on the electric grid. Life cycle assessment (LCA) is used to evaluate the total energy and GHG emissions for baseline and lightweight internal combustion vehicles (ICVs), hybrid electric vehicles (HEVs) and PHEVs when they are operated with baseline and advanced gasoline and ethanol engines. Design harmonization techniques are developed to compare diverse vehicle platforms by creating functionally equivalent conventional and hybrid vehicle models that account for increased structural support required for heavier, electrified powertrains. Lightweight vehicle models include primary and secondary mass reductions (including powertrain re-sizing) and are evaluated with body-in-white mass reduction scenarios with aluminum and advanced/high strength steel (A/HSS). Advanced engine/fuel strategies are incorporated in the vehicle models with fuel economy maps, developed with a novel method to ensure combustion limits are not violated under boosted and dilute conditions for high compression ratio engines. The harmonized vehicle models show that the structural mass required per kg of powertrain mass for electrified vehicles is 0.2-0.3 kg. As compared to lightweight materials, more significant life cycle improvements are achieved by using advanced gasoline and E85 engines, as fuel consumption is reduced up to 24%. As compared to A/HSS, more mass can be removed from the vehicle with aluminum, leading to greater fuel consumption and life cycle reductions. However, due to the higher energy and GHG emissions associated with aluminum production, more significant life cycle reductions occur for an equivalent decrease in vehicle mass with A/HSS. Life cycle impacts are reduced more for ICVs as compared to hybrid vehicles because fuel economy is most sensitive to mass for ICVs. Considering the same vehicle platform, the combination of lightweight materials and advanced engines yields the most life cycle energy and GHG reductions, as the technologies provide complimentary results due to engine downsizing. The least life cycle energy and GHG emissions occur for the lightest weight hybrid vehicles using the downsized/turbocharged gasoline or E85 engine.en_US
dc.language.isoen_USen_US
dc.subjectLife Cycle Assessment (LCA)en_US
dc.subjectAdvanced Combustion Enginesen_US
dc.subjectLightweight Materialsen_US
dc.subjectHybrid Electric Vehiclesen_US
dc.subjectVehicle Modelingen_US
dc.subjectEthanolen_US
dc.titleThe Potential of Lightweight Materials and Advance Engines to Reduce Life Cycle Energy and Greenhouse Gas Emissions for ICVs and Evs Using Design Harmonization Techniques.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineering and Natural Resources and Environmenten_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberAssanis, Dionissios N.en_US
dc.contributor.committeememberBorgnakke, Clausen_US
dc.contributor.committeememberKeoleian, Gregory A.en_US
dc.contributor.committeememberDecicco, John M.en_US
dc.contributor.committeememberKelly, Jarod Coryen_US
dc.contributor.committeememberLavoie, George A.en_US
dc.contributor.committeememberPeng, Hueien_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbsecondlevelTransportationen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102298/1/amle_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.