Show simple item record

Characterization of a highly flexible self‐assembling protein system designed to form nanocages

dc.contributor.authorPatterson, Dustin P.en_US
dc.contributor.authorSu, Minen_US
dc.contributor.authorFranzmann, Titus M.en_US
dc.contributor.authorSciore, Aaronen_US
dc.contributor.authorSkiniotis, Georgiosen_US
dc.contributor.authorMarsh, E. Neil G.en_US
dc.date.accessioned2014-02-11T17:57:02Z
dc.date.available2015-04-01T19:59:06Zen_US
dc.date.issued2014-02en_US
dc.identifier.citationPatterson, Dustin P.; Su, Min; Franzmann, Titus M.; Sciore, Aaron; Skiniotis, Georgios; Marsh, E. Neil G. (2014). "Characterization of a highly flexible self‐assembling protein system designed to form nanocages." Protein Science 23(2): 190-199.en_US
dc.identifier.issn0961-8368en_US
dc.identifier.issn1469-896Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102658
dc.description.abstractThe design of proteins that self‐assemble into well‐defined, higher order structures is an important goal that has potential applications in synthetic biology, materials science, and medicine. We previously designed a two‐component protein system, designated A‐(+) and A‐(−), in which self‐assembly is mediated by complementary electrostatic interactions between two coiled‐coil sequences appended to the C‐terminus of a homotrimeric enzyme with C 3 symmetry. The coiled‐coil sequences are attached through a short, flexible spacer sequence providing the system with a high degree of conformational flexibility. Thus, the primary constraint guiding which structures the system may assemble into is the symmetry of the protein building block. We have now characterized the properties of the self‐assembling system as a whole using native gel electrophoresis and analytical ultracentrifugation (AUC) and the properties of individual assemblies using cryo‐electron microscopy (EM). We show that upon mixing, A‐(+) and A‐(−) form only six different complexes in significant concentrations. The three predominant complexes have hydrodynamic properties consistent with the formation of heterodimeric, tetrahedral, and octahedral protein cages. Cryo‐EM of size‐fractionated material shows that A‐(+) and A‐(−) form spherical particles with diameters appropriate for tetrahedral or octahedral protein cages. The particles varied in diameter in an almost continuous manner suggesting that their structures are extremely flexible.en_US
dc.publisherOxford University Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCoiled‐Coilen_US
dc.subject.otherSelf‐Assemblyen_US
dc.subject.otherCryo‐Electron Microscopyen_US
dc.subject.otherAnalytical Ultracentrifugationen_US
dc.subject.otherSymmetryen_US
dc.subject.otherProtein Cagesen_US
dc.titleCharacterization of a highly flexible self‐assembling protein system designed to form nanocagesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102658/1/pro2405.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102658/2/pro2405-sup-0001-suppinfo01.pdf
dc.identifier.doi10.1002/pro.2405en_US
dc.identifier.sourceProtein Scienceen_US
dc.identifier.citedreferenceMonera OD, Zhou NE, Kay CM, Hodges RS ( 1993 ) Comparison of antiparallel and parallel two‐stranded alpha‐helical coiled‐coils. J Biol Chem 268: 19218 – 19227.en_US
dc.identifier.citedreferenceMandelkow E, Mandelkow EM ( 1989 ) Microtubular structure and tubulin polymerization. Curr Opin Cell Biol 1: 5 – 9.en_US
dc.identifier.citedreferenceReisler E, Egelman EH ( 2007 ) Actin structure and function: what we still do not understand. J Biol Chem 282: 36133 – 36137.en_US
dc.identifier.citedreferenceWolberg AS ( 2007 ) Thrombin generation and fibrin clot structure. Blood Rev 21: 131 – 142.en_US
dc.identifier.citedreferenceShoulders MD, Raines RT ( 2009 ) Collagen structure and stability. Ann Rev Biochem 78: 929 – 958.en_US
dc.identifier.citedreferenceRossmann MG, Johnson JE ( 1989 ) Icosahedral RNA virus structure. Ann Rev Biochem 58: 533 – 573.en_US
dc.identifier.citedreferenceKuhn RJ, Rossmann MG ( 2005 ) Structure and assembly of icosahedral enveloped RNA viruses. Virus Struct Assem 64: 263 – 284.en_US
dc.identifier.citedreferenceKang S, Douglas T ( 2010 ) Some enzymes just need a space of their own. Science 327: 42 – 43.en_US
dc.identifier.citedreferenceTheil EC ( 1987 ) Ferritin ‐ structure, gene regulation, and cellular function in animals, plants, and microorganisms. Ann Rev Biochem 56: 289 – 315.en_US
dc.identifier.citedreferenceMattevi A, Obmolova G, Schulze E, Kalk KH, Westphal AH, Dekok A, Hol WGJ ( 1992 ) Atomic structure of the cubic core of the pyruvate dehydrogenase multienzyme complex. Science 255: 1544 – 1550.en_US
dc.identifier.citedreferenceKim DY, Kim KK ( 2003 ) Crystal structure of ClpX molecular chaperone from Helicobacter pylori. J Biol Chem 278: 50664 – 50670.en_US
dc.identifier.citedreferenceSutter M, Boehringer D, Gutmann S, Guenther S, Prangishvili D, Loessner MJ, Stetter KO, Weber‐Ban E, Ban N ( 2008 ) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15: 939 – 947.en_US
dc.identifier.citedreferenceTanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC, Yeates TO ( 2008 ) Atomic level models of the bacterial carboxysome shell. Science 319: 1083 – 1086.en_US
dc.identifier.citedreferenceTanaka S, Sawaya MR, Yeates TO ( 2010 ) Structure and mechanisms of a protein‐based organelle in Escherichia coli. Science 327: 81 – 84.en_US
dc.identifier.citedreferencePatterson DP, Desai AM, Holl MMB, Marsh ENG ( 2011 ) Evaluation of a symmetry‐based strategy for assembling protein complexes. RSC Advances 1: 1004 – 1012.en_US
dc.identifier.citedreferenceGriffiths JS, Wymer NJ, Njolito E, Niranjanakumari S, Fierke CA, Toone EJ ( 2002 ) Cloning, isolation and characterization of the Thermotoga maritima KDPG aldolase. Bioorg Med Chem 10: 545 – 550.en_US
dc.identifier.citedreferenceMonera OD, Kay CM, Hodges RS ( 1994 ) Electrostatic interactions control the parallel and antiparallel orientation of alpha‐helical chains in two‐stranded alpha‐helical coiled‐coils. Biochemistry 33: 3862 – 3871.en_US
dc.identifier.citedreferenceMcClain DL, Woods HL, Oakley MG ( 2001 ) Design and characterization of a herterdimeric coiled‐coil that forms exclusively with an antiparallel relative helix orientation. J Am Chem Soc 123: 3151 – 3152.en_US
dc.identifier.citedreferenceOakley MG, Hollenbeck JJ ( 2001 ) The design of antiparallel coiled coils. Curr Opin Struct Biol 11: 450 – 457.en_US
dc.identifier.citedreferenceDemeler B, van Holde KE ( 2004 ) Sedimentation velocity analysis of highly heterogeneous systems. Anal Biochem 335: 279 – 288.en_US
dc.identifier.citedreferenceDemeler B, Brookes E, Nagel‐Stegert L ( 2009 ) Analysis of heterogeneity in molecular weight and shape by analytical ultracentrifugation using parallel distributed computing. Methods Enzymol 454: 87 – 113.en_US
dc.identifier.citedreferenceBrookes E, Cao WM, Demeler B ( 2010 ) A two‐dimensional spectrum analysis for sedimentation velocity experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J 39: 405 – 414.en_US
dc.identifier.citedreferenceFrank J ( 2006 ) Three‐dimensional electron microscopy of macromolecular assemblies. New York: Oxford University Press.en_US
dc.identifier.citedreferenceLudtke SJ, Baldwin PR, Chiu W ( 1999 ) EMAN: semiautomated software for high‐resolution single‐particle reconstructions. J Struct Biol 128: 82 – 97.en_US
dc.identifier.citedreferenceDrab T, Kracmerova J, Ticha I, Hanzlikova E, Ticha M, Ryslava H, Doubnerova V, Manaskova‐Postlerova P, Liberda J ( 2011 ) Native red electrophoresis ‐ A new method suitable for separation of native proteins. Electrophoresis 32: 3597 – 3599.en_US
dc.identifier.citedreferenceOhi M, Li Y, Cheng Y, Walz T ( 2004 ) Negative staining and image classification: powerful tools in modern electron microscopy. Biol Proced Online 6: 23 – 34.en_US
dc.identifier.citedreferenceChockalingam K, Blenner M, Banta S ( 2007 ) Design and application of stimulus‐responsive peptide systems. Prot Engin Des Sel 20: 155 – 161.en_US
dc.identifier.citedreferenceBromley EHC, Channon K, Moutevelis E, Woolfson DN ( 2008 ) Peptide and protein building blocks for synthetic biology: from programming biomolecules to self‐organized biomolecular systems. ACS Chem Biol 3: 38 – 50.en_US
dc.identifier.citedreferenceYeates TO, Padilla JE ( 2002 ) Designing supramolecular protein assemblies. Curr Opin Struct Biol 12: 464 – 470.en_US
dc.identifier.citedreferenceRingler P, Schulz GE ( 2003 ) Self‐assembly of proteins into designed networks. Science 302: 106 – 109.en_US
dc.identifier.citedreferenceSugimoto K, Kanamaru S, Iwasaki K, Arisaka F, Yamashita I ( 2006 ) Construction of a ball‐and‐spike protein supramolecule. Angew Chem Intl Ed 45: 2725 – 2728.en_US
dc.identifier.citedreferenceChannon K, Bromley EHC, Woolfson DN ( 2008 ) Synthetic biology through biomolecular design and engineering. Curr Opin Struct Biol 18: 491 – 498.en_US
dc.identifier.citedreferenceYoung M, Willits D, Uchida M, Douglas T ( 2008 ) Plant viruses as biotemplates for materials and their use in nanotechnology. Ann Rev Phytopathol 46: 361 – 384.en_US
dc.identifier.citedreferencePapapostolou D, Howorka S ( 2009 ) Engineering and exploiting protein assemblies in synthetic biology. Mol Biosys 5: 723 – 732.en_US
dc.identifier.citedreferenceKing NP, Sheffler W, Sawaya MR, Vollmar BS, Sumida JP, Andre I, Gonen T, Yeates TO, Baker D ( 2012 ) Computational design of self‐assembling protein nanomaterials with atomic level accuracy. Science 336: 1171 – 1174.en_US
dc.identifier.citedreferenceFletcher JM, Harniman RL, Barnes FRH, Boyle AL, Collins A, Mantell J, Sharp TH, Antognozzi M, Booth PJ, Linden N, Miles MJ, Sessions RB, Verkade P, Woolfson DN ( 2013 ) Self‐assembling cages from coiled‐coil peptide modules. Science 340: 595 – 599.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.