Show simple item record

Circadian rhythms and mood: Opportunities for multi‐level analyses in genomics and neuroscience

dc.contributor.authorLi, Jun Z.en_US
dc.date.accessioned2014-02-11T17:57:06Z
dc.date.available2015-04-16T14:24:20Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationLi, Jun Z. (2014). "Circadian rhythms and mood: Opportunities for multi‐level analyses in genomics and neuroscience." BioEssays 36(3): 305-315.en_US
dc.identifier.issn0265-9247en_US
dc.identifier.issn1521-1878en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102671
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherDynamicsen_US
dc.subject.otherGeneticsen_US
dc.subject.otherIntegrative Analysisen_US
dc.subject.otherCircadian Rhythmen_US
dc.subject.otherNetworken_US
dc.subject.otherNeurobiologyen_US
dc.subject.otherMood Disorderen_US
dc.titleCircadian rhythms and mood: Opportunities for multi‐level analyses in genomics and neuroscienceen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102671/1/bies201300141.pdf
dc.identifier.doi10.1002/bies.201300141en_US
dc.identifier.sourceBioEssaysen_US
dc.identifier.citedreferenceMcClellan J, King MC. 2010. Genetic heterogeneity in human disease. Cell 141: 210 – 7.en_US
dc.identifier.citedreferenceLee SH, Ripke S, Neale BM, Faraone SV, et al. 2013. Genetic relationship between five psychiatric disorders estimated from genome‐wide SNPs. Nat Genet 45: 984 – 94.en_US
dc.identifier.citedreferenceHirschhorn JN. 2009. Genomewide association studies – illuminating biologic pathways. N Engl J Med 360: 1699 – 701.en_US
dc.identifier.citedreferenceVisscher PM, Brown MA, McCarthy MI, Yang J. 2012. Five years of GWAS discovery. Am J Hum Genet 90: 7 – 24.en_US
dc.identifier.citedreference[Anonymous]. 2005. Framework for a fully powered risk engine. Nat Genet 37: 1153.en_US
dc.identifier.citedreferenceRamanan VK, Shen L, Moore JH, Saykin AJ. 2012. Pathway analysis of genomic data: concepts, methods, and prospects for future development. Trends Genet 28: 323 – 32.en_US
dc.identifier.citedreferenceWang K, Li M, Hakonarson H. 2010. Analysing biological pathways in genome‐wide association studies. Nat Rev Genet 11: 843 – 54.en_US
dc.identifier.citedreferenceSchadt EE. 2009. Molecular networks as sensors and drivers of common human diseases. Nature 461: 218 – 23.en_US
dc.identifier.citedreferenceSullivan PF. 2012. Puzzling over schizophrenia: schizophrenia as a pathway disease. Nat Med 18: 210 – 1.en_US
dc.identifier.citedreferenceGulsuner S, Walsh T, Watts AC, Lee MK, et al. 2013. Spatial and temporal mapping of de novo mutations in schizophrenia to a fetal prefrontal cortical network. Cell 154: 518 – 29.en_US
dc.identifier.citedreferencePerry C, Mackay‐Sim A, Feron F, McGrath J. 2002. Olfactory neural cells: an untapped diagnostic and therapeutic resource. The 2000 Ogura Lecture. Laryngoscope 112: 603 – 7.en_US
dc.identifier.citedreferenceYang S, Van Dongen HP, Wang K, Berrettini W, et al. 2009. Assessment of circadian function in fibroblasts of patients with bipolar disorder. Mol Psychiatry 14: 143 – 55.en_US
dc.identifier.citedreferenceBrennand KJ, Simone A, Jou J, Gelboin‐Burkhart C, et al. 2011. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473: 221 – 5.en_US
dc.identifier.citedreferenceDeboer T, van Diepen HC, Ferrari MD, Van den Maagdenberg AM, et al. 2013. Reduced sleep and low adenosinergic sensitivity in cacna1a R192Q mutant mice. Sleep 36: 127 – 36.en_US
dc.identifier.citedreferenceRoyer S, Zemelman BV, Losonczy A, Kim J, et al. 2012. Control of timing, rate and bursts of hippocampal place cells by dendritic and somatic inhibition. Nat Neurosci 15: 769 – 75.en_US
dc.identifier.citedreferenceAbe M, Herzog ED, Yamazaki S, Straume M, et al. 2002. Circadian rhythms in isolated brain regions. J Neurosci 22: 350 – 6.en_US
dc.identifier.citedreferenceGuilding C, Piggins HD. 2007. Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain ? Eur J Neurosci 25: 3195 – 216.en_US
dc.identifier.citedreferenceAston‐Jones G, Chen S, Zhu Y, Oshinsky ML. 2001. A neural circuit for circadian regulation of arousal. Nat Neurosci 4: 732 – 8.en_US
dc.identifier.citedreferenceSmith DF, Jakobsen S. 2013. Molecular neurobiology of depression: PET findings on the elusive correlation with symptom severity. Front Psychiatry 4: 8.en_US
dc.identifier.citedreferenceWaddington CH. 1959. Canalization of development and genetic assimilation of acquired characters. Nature 183: 1654 – 5.en_US
dc.identifier.citedreferenceMcGrath JJ, Hannan AJ, Gibson G. 2011. Decanalization, brain development and risk of schizophrenia. Transl Psychiatry 1: e14.en_US
dc.identifier.citedreferenceAdam D. 2013. Mental health: on the spectrum. Nature 496: 416 – 48.en_US
dc.identifier.citedreferenceHyman SE. 2012. Revolution stalled. Sci Transl Med 4: 155cm11.en_US
dc.identifier.citedreferenceHealy D. 1987. Rhythm and blues. Neurochemical, neuropharmacological and neuropsychological implications of a hypothesis of circadian rhythm dysfunction in the affective disorders. Psychopharmacology (Berl) 93: 271 – 85.en_US
dc.identifier.citedreferenceLi JZ, Bunney BG, Meng F, Hagenauer MH, et al. 2013. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci USA 110: 9950 – 5.en_US
dc.identifier.citedreferenceEdgar N, McClung CA. 2013. Major depressive disorder: a loss of circadian synchrony ? BioEssays 35: 940 – 4.en_US
dc.identifier.citedreferenceYamazaki S, Numano R, Abe M, Hida A, et al. 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288: 682 – 5.en_US
dc.identifier.citedreferenceTakahashi JS, Hong HK, Ko CH, McDearmon EL. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9: 764 – 75.en_US
dc.identifier.citedreferenceBaggs JE, Price TS, DiTacchio L, Panda S, et al. 2009. Network features of the mammalian circadian clock. PLoS Biol 7: e52.en_US
dc.identifier.citedreferenceHogenesch JB, Ueda HR. 2011. Understanding systems‐level properties: timely stories from the study of clocks. Nat Rev Genet 12: 407 – 16.en_US
dc.identifier.citedreferenceMuraro NI, Pirez N, Ceriani MF. 2013. The circadian system: plasticity at many levels. Neuroscience 247: 280 – 93.en_US
dc.identifier.citedreferenceVansteensel MJ, Michel S, Meijer JH. 2008. Organization of cell and tissue circadian pacemakers: a comparison among species. Brain Res Rev 58: 18 – 47.en_US
dc.identifier.citedreferenceLiu AC, Welsh DK, Ko CH, Tran HG, et al. 2007. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell 129: 605 – 16.en_US
dc.identifier.citedreferenceMeijer JH, Michel S, Vanderleest HT, Rohling JH. 2010. Daily and seasonal adaptation of the circadian clock requires plasticity of the SCN neuronal network. Eur J Neurosci 32: 2143 – 51.en_US
dc.identifier.citedreferenceBuhr ED, Yoo SH, Takahashi JS. 2010. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330: 379 – 85.en_US
dc.identifier.citedreferenceGoldbeter A. 2002. Computational approaches to cellular rhythms. Nature 420: 238 – 45.en_US
dc.identifier.citedreferenceForger DB, Peskin CS. 2003. A detailed predictive model of the mammalian circadian clock. Proc Natl Acad Sci USA 100: 14806 – 11.en_US
dc.identifier.citedreferenceAbraham U, Granada AE, Westermark PO, Heine M, et al. 2010. Coupling governs entrainment range of circadian clocks. Mol Syst Biol 6: 438.en_US
dc.identifier.citedreferenceButler MP, Silver R. 2009. Basis of robustness and resilience in the suprachiasmatic nucleus: individual neurons form nodes in circuits that cycle daily. J Biol Rhythms 24: 340 – 52.en_US
dc.identifier.citedreferenceBuchman TG. 2002. The community of the self. Nature 420: 246 – 51.en_US
dc.identifier.citedreferenceBuzsaki G, Watson BO. 2012. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin Neurosci 14: 345 – 67.en_US
dc.identifier.citedreferenceFujisawa S, Amarasingham A, Harrison MT, Buzsaki G. 2008. Behavior‐dependent short‐term assembly dynamics in the medial prefrontal cortex. Nat Neurosci 11: 823 – 33.en_US
dc.identifier.citedreferenceUhlhaas PJ, Haenschel C, Nikolic D, Singer W. 2008. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34: 927 – 43.en_US
dc.identifier.citedreferenceUhlhaas PJ, Singer W. 2010. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11: 100 – 13.en_US
dc.identifier.citedreferenceMiklowitz DJ, Otto MW, Frank E, Reilly‐Harrington NA, et al. 2007. Intensive psychosocial intervention enhances functioning in patients with bipolar depression: results from a 9‐month randomized controlled trial. Am J Psychiatry 164: 1340 – 7.en_US
dc.identifier.citedreferenceFrank E, Swartz HA, Kupfer DJ. 2000. Interpersonal and social rhythm therapy: managing the chaos of bipolar disorder. Biol Psychiatry 48: 593 – 604.en_US
dc.identifier.citedreferenceKaratsoreos IN, McEwen BS. 2011. Psychobiological allostasis: resistance, resilience and vulnerability. Trends Cogn Sci 15: 576 – 84.en_US
dc.identifier.citedreferenceKrishnan V, Nestler EJ. 2010. Linking molecules to mood: new insight into the biology of depression. Am J Psychiatry 167: 1305 – 20.en_US
dc.identifier.citedreferenceRoybal K, Theobold D, Graham A, DiNieri JA, et al. 2007. Mania‐like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104: 6406 – 11.en_US
dc.identifier.citedreferenceMcClung CA. 2013. How might circadian rhythms control mood? Let me count the ways. Biol Psychiatry 74: 242 – 9.en_US
dc.identifier.citedreferenceHampp G, Albrecht U. 2008. The circadian clock and mood‐related behavior. Commun Integr Biol 1: 1 – 3.en_US
dc.identifier.citedreferenceImeri L, Opp MR. 2009. How (and why) the immune system makes us sleep. Nat Rev Neurosci 10: 199 – 210.en_US
dc.identifier.citedreferenceRaison CL, Miller AH. 2011. Is depression an inflammatory disorder ? Curr Psychiatry Rep 13: 467 – 75.en_US
dc.identifier.citedreferenceMcCarthy MJ, Welsh DK. 2012. Cellular circadian clocks in mood disorders. J Biol Rhythms 27: 339 – 52.en_US
dc.identifier.citedreferenceMenet JS, Rosbash M. 2011. When brain clocks lose track of time: cause or consequence of neuropsychiatric disorders. Curr Opin Neurobiol 21: 849 – 57.en_US
dc.identifier.citedreferenceAkhtar RA, Reddy AB, Maywood ES, Clayton JD, et al. 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12: 540 – 50.en_US
dc.identifier.citedreferencePanda S, Antoch MP, Miller BH, Su AI, et al. 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307 – 20.en_US
dc.identifier.citedreferenceYan J, Wang H, Liu Y, Shao C. 2008. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4: e1000193.en_US
dc.identifier.citedreferenceYang S, Wang K, Valladares O, Hannenhalli S, et al. 2007. Genome‐wide expression profiling and bioinformatics analysis of diurnally regulated genes in the mouse prefrontal cortex. Genome Biol 8: R247.en_US
dc.identifier.citedreferenceZieker D, Jenne I, Koenigsrainer I, Zdichavsky M, et al. 2010. Circadian expression of clock‐ and tumor suppressor genes in human oral mucosa. Cell Physiol Biochem 26: 155 – 66.en_US
dc.identifier.citedreferenceBrown SA, Fleury‐Olela F, Nagoshi E, Hauser C, et al. 2005. The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3: e338.en_US
dc.identifier.citedreferenceAkashi M, Soma H, Yamamoto T, Tsugitomi A, et al. 2010. Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc Natl Acad Sci USA 107: 15643 – 58.en_US
dc.identifier.citedreferenceHoffman AE, Zheng T, Ba Y, Stevens RG, et al. 2010. Phenotypic effects of the circadian gene Cryptochrome 2 on cancer‐related pathways. BMC Cancer 10: 110.en_US
dc.identifier.citedreferenceHughes ME, DiTacchio L, Hayes KR, Vollmers C, et al. 2009. Harmonics of circadian gene transcription in mammals. PLoS Genet 5: e1000442.en_US
dc.identifier.citedreferenceCarmichael ST. 2003. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neurol 16: 699 – 704.en_US
dc.identifier.citedreferenceJin K, Mao XO, Eshoo MW, Nagayama T, et al. 2001. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 50: 93 – 103.en_US
dc.identifier.citedreferenceLi JZ, Vawter MP, Walsh DM, Tomita H, et al. 2004. Systematic changes in gene expression in postmortem human brains associated with tissue pH and terminal medical conditions. Hum Mol Genet 13: 609 – 16.en_US
dc.identifier.citedreferenceJones CR, Huang AL, Ptacek LJ, Fu YH. 2013. Genetic basis of human circadian rhythm disorders. Exp Neurol 243: 28 – 33.en_US
dc.identifier.citedreferenceToh KL, Jones CR, He Y, Eide EJ, et al. 2001. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291: 1040 – 3.en_US
dc.identifier.citedreferenceXu Y, Toh KL, Jones CR, Shin JY, et al. 2007. Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell 128: 59 – 70.en_US
dc.identifier.citedreferenceXu Y, Padiath QS, Shapiro RE, Jones CR, et al. 2005. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640 – 4.en_US
dc.identifier.citedreferenceHe Y, Jones CR, Fujiki N, Xu Y, et al. 2009. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 325: 866 – 70.en_US
dc.identifier.citedreferenceBarclay NL, Eley TC, Buysse DJ, Rijsdijk FV, et al. 2010. Genetic and environmental influences on different components of the Pittsburgh Sleep Quality Index and their overlap. Sleep 33: 659 – 68.en_US
dc.identifier.citedreferenceGenderson MR, Rana BK, Panizzon MS, Grant MD, et al. 2013. Genetic and environmental influences on sleep quality in middle‐aged men: a twin study. J Sleep Res 22: 519 – 26.en_US
dc.identifier.citedreferenceHublin C, Partinen M, Koskenvuo M, Kaprio J. 2011. Heritability and mortality risk of insomnia‐related symptoms: a genetic epidemiologic study in a population‐based twin cohort. Sleep 34: 957 – 64.en_US
dc.identifier.citedreferenceGehrman PR, Meltzer LJ, Moore M, Pack AI, et al. 2011. Heritability of insomnia symptoms in youth and their relationship to depression and anxiety. Sleep 34: 1641 – 6.en_US
dc.identifier.citedreferenceGottlieb DJ, O'Connor GT, Wilk JB. 2007. Genome‐wide association of sleep and circadian phenotypes. BMC Med Genet 8: S9.en_US
dc.identifier.citedreferenceByrne EM, Gehrman PR, Medland SE, Nyholt DR, et al. 2013. A genome‐wide association study of sleep habits and insomnia. Am J Med Genet B Neuropsychiatr Genet 162: 439 – 51.en_US
dc.identifier.citedreferenceAllebrandt KV, Amin N, Muller‐Myhsok B, Esko T, et al. 2013. A K(ATP) channel gene effect on sleep duration: from genome‐wide association studies to function in Drosophila. Mol Psychiatry 18: 122 – 32.en_US
dc.identifier.citedreferenceParsons MJ, Lester KJ, Barclay NL, Nolan PM, et al. 2013. Replication of genome‐wide association studies (GWAS) loci for sleep in the British G1219 cohort. Am J Med Genet B Neuropsychiatr Genet 162: 431 – 8.en_US
dc.identifier.citedreferenceHirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. 2002. A comprehensive review of genetic association studies. Genet Med 4: 45 – 61.en_US
dc.identifier.citedreferenceLohmueller KE, Pearce CL, Pike M, Lander ES, et al. 2003. Meta‐analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat Genet 33: 177 – 82.en_US
dc.identifier.citedreferenceRipke S, Wray NR, Lewis CM, Hamilton SP, et al. 2013. A mega‐analysis of genome‐wide association studies for major depressive disorder. Mol Psychiatry 18: 497 – 511.en_US
dc.identifier.citedreferencePsychiatric GWAS Consortium Bipolar Disorder Working Group. 2011. Large‐scale genome‐wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat Genet 43: 977 – 83.en_US
dc.identifier.citedreferenceSchizophrenia Psychiatric Genome‐Wide Association Study (GWAS) Consortium. 2011. Genome‐wide association study identifies five new schizophrenia loci. Nat Genet 43: 969 – 76.en_US
dc.identifier.citedreferenceRipke S, O'Dushlaine C, Chambert K, Moran JL, et al. 2013. Genome‐wide association analysis identifies 13 new risk loci for schizophrenia. Nat Genet 45: 1150 – 9.en_US
dc.identifier.citedreferencePurcell SM, Wray NR, Stone JL, Visscher PM, et al. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748 – 52.en_US
dc.identifier.citedreferenceBush WS, Sawcer SJ, de Jager PL, Oksenberg JR, et al. 2010. Evidence for polygenic susceptibility to multiple sclerosis – the shape of things to come. Am J Hum Genet 86: 621 – 5.en_US
dc.identifier.citedreferenceSpeliotes EK, Willer CJ, Berndt SI, Monda KL, et al. 2010. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42: 937 – 48.en_US
dc.identifier.citedreferenceSmoller JW, Craddock N, Kendler K, Lee PH, et al. 2013. Identification of risk loci with shared effects on five major psychiatric disorders: a genome‐wide analysis. Lancet 381: 1371 – 9.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.