Show simple item record

Alteration of select gene expression patterns in individuals infected with HIV‐1

dc.contributor.authorSerrao, Eriken_US
dc.contributor.authorWang, Chia‐haoen_US
dc.contributor.authorFrederick, Toinetteen_US
dc.contributor.authorLee, Chi‐linen_US
dc.contributor.authorAnthony, Patriciaen_US
dc.contributor.authorArribas‐layton, Daviden_US
dc.contributor.authorBaker, Kerryen_US
dc.contributor.authorMillstein, Joshuaen_US
dc.contributor.authorKovacs, Andreaen_US
dc.contributor.authorNeamati, Nourien_US
dc.date.accessioned2014-02-11T17:57:07Z
dc.date.available2015-06-01T15:48:44Zen_US
dc.date.issued2014-04en_US
dc.identifier.citationSerrao, Erik; Wang, Chia‐hao ; Frederick, Toinette; Lee, Chi‐lin ; Anthony, Patricia; Arribas‐layton, David ; Baker, Kerry; Millstein, Joshua; Kovacs, Andrea; Neamati, Nouri (2014). "Alteration of select gene expression patterns in individuals infected with HIVâ 1." Journal of Medical Virology 86(4): 678-686.en_US
dc.identifier.issn0146-6615en_US
dc.identifier.issn1096-9071en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102676
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAPOBEC3Gen_US
dc.subject.otherP21/WAF1en_US
dc.subject.otherLEDGF/P75en_US
dc.subject.otherHSP90en_US
dc.subject.otherHIVen_US
dc.subject.otherGene Expressionen_US
dc.titleAlteration of select gene expression patterns in individuals infected with HIV‐1en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102676/1/jmv23872.pdf
dc.identifier.doi10.1002/jmv.23872en_US
dc.identifier.sourceJournal of Medical Virologyen_US
dc.identifier.citedreferenceSiliciano JD, Kajdas J, Finzi D, Quinn TC, Chadwick K, Margolick JB, Kovacs C, Gange SJ, Siliciano RF. 2003. Long‐term follow‐up studies confirm the stability of the latent reservoir for HIV‐1 in resting CD4+ T cells. Nat Med 9: 727 – 728.en_US
dc.identifier.citedreferenceMeehan AM, Saenz DT, Morrison JH, Garcia‐Rivera JA, Peretz M, Llano M, Poeschla EM. 2009. LEDGF/p75 proteins with alternative chromatin tethers are functional HIV‐1 cofactors. PLoS Pathog 5: e1000522.en_US
dc.identifier.citedreferenceMous K, Jennes W, Roo AD, Pintelon I, Kestens L, Ostade XV. 2011. Intracellular detection of differential APOBEC3G, TRIM5alpha, and LEDGF/p75 protein expression in peripheral blood by flow cytometry. J Immunol Methods 372.en_US
dc.identifier.citedreferenceMous K, Jennes W, Camara M, Seydi M, Daneau G, Mboup S, Kestens L, Van Ostade X. 2012. Expression analysis of LEDGF/p75, APOBEC3G, TRIM5alpha, and tetherin in a Senegalese cohort of HIV‐1‐exposed seronegative individuals. PLoS ONE 7: e33934.en_US
dc.identifier.citedreferenceO'Keeffe B, Fong Y, Chen D, Zhou S, Zhou Q. 2000. Requirement for a kinase‐specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P‐TEFb‐mediated tat stimulation of HIV‐1 transcription. J Biol Chem 275: 279 – 287.en_US
dc.identifier.citedreferenceReddy K, Winkler CA, Werner L, Mlisana K, Abdool Karim SS, Ndung'u T. 2010. APOBEC3G expression is dysregulated in primary HIV‐1 infection and polymorphic variants influence CD4+ T‐cell counts and plasma viral load. AIDS 24: 195 – 204.en_US
dc.identifier.citedreferenceRoesch F, Meziane O, Kula A, Nisole S, Porrot F, Anderson I, Mammano F, Fassati A, Marcello A, Benkirane M, Schwartz O. 2012. Hyperthermia stimulates HIV‐1 replication. PLoS Pathog 8: e1002792.en_US
dc.identifier.citedreferenceSaez‐Cirion A, Hamimi C, Bergamaschi A, David A, Versmisse P, Melard A, Boufassa F, Barre‐Sinoussi F, Lambotte O, Rouzioux C, Pancino G. 2011. Restriction of HIV‐1 replication in macrophages and CD4+ T cells from HIV controllers. Blood 118: 955 – 964.en_US
dc.identifier.citedreferenceSerrao E, Odde S, Ramkumar K, Neamati N. 2009. Raltegravir, elvitegravir, and metoogravir: The birth of “me‐too” HIV‐1 integrase inhibitors. Retrovirology 6: 25.en_US
dc.identifier.citedreferenceSharma P, Singh DP, Fatma N, Chylack LT Jr, Shinohara T. 2000. Activation of LEDGF gene by thermal‐and oxidative‐stresses. Biochem Biophys Res Commun 276: 1320 – 1324.en_US
dc.identifier.citedreferenceSheehy AM, Gaddis NC, Choi JD, Malim MH. 2002. Isolation of a human gene that inhibits HIV‐1 infection and is suppressed by the viral Vif protein. Nature 418: 646 – 650.en_US
dc.identifier.citedreferenceShun MC, Raghavendra NK, Vandegraaff N, Daigle JE, Hughes S, Kellam P, Cherepanov P, Engelman A. 2007. LEDGF/p75 functions downstream from preintegration complex formation to effect gene‐specific HIV‐1 integration. Genes Dev 21: 1767 – 1778.en_US
dc.identifier.citedreferenceSiliciano RF, Greene WC. 2011. HIV latency. Cold Spring Harb Perspect Med 1: a007096.en_US
dc.identifier.citedreferenceSingh DP, Fatma N, Kimura A, Chylack LT Jr, Shinohara T. 2001. LEDGF binds to heat shock and stress‐related element to activate the expression of stress‐related genes. Biochem Biophys Res Commun 283: 943 – 955.en_US
dc.identifier.citedreferenceSingh DP, Ohguro N, Kikuchi T, Sueno T, Reddy VN, Yuge K, Chylack LT Jr, Shinohara T. 2000. Lens epithelium‐derived growth factor: Effects on growth and survival of lens epithelial cells, keratinocytes, and fibroblasts. Biochem Biophys Res Commun 267: 373 – 381.en_US
dc.identifier.citedreferenceStivala LA, Cazzalini O, Prosperi E. 2012. The cyclin‐dependent kinase inhibitor p21CDKN1A as a target of anti‐cancer drugs. Curr Cancer Drug Targets 12: 85 – 96.en_US
dc.identifier.citedreferenceUlenga NK, Sarr AD, Thakore‐Meloni S, Sankale JL, Eisen G, Kanki PJ. 2008. Relationship between human immunodeficiency type 1 infection and expression of human APOBEC3G and APOBEC3F. J Infect Dis 198: 486 – 492.en_US
dc.identifier.citedreferenceVanegas M, Llano M, Delgado S, Thompson D, Peretz M, Poeschla E. 2005. Identification of the LEDGF/p75 HIV‐1 integrase‐interaction domain and NLS reveals NLS‐independent chromatin tethering. J Cell Sci 118: 1733 – 1743.en_US
dc.identifier.citedreferenceVazquez‐Perez JA, Ormsby CE, Hernandez‐Juan R, Torres KJ, Reyes‐Teran G. 2009. APOBEC3G mRNA expression in exposed seronegative and early stage HIV infected individuals decreases with removal of exposure and with disease progression. Retrovirology 6: 23.en_US
dc.identifier.citedreferenceVigneault F, Woods M, Buzon MJ, Li C, Pereyra F, Crosby SD, Rychert J, Church G, Martinez‐Picado J, Rosenberg ES, Telenti A, Yu XG, Lichterfeld M. 2011. Transcriptional profiling of CD4 T cells identifies distinct subgroups of HIV‐1 elite controllers. J Virol 85: 3015 – 3019.en_US
dc.identifier.citedreferenceVozzolo L, Loh B, Gane PJ, Tribak M, Zhou L, Anderson I, Nyakatura E, Jenner RG, Selwood D, Fassati A. 2010. Gyrase B inhibitor impairs HIV‐1 replication by targeting Hsp90 and the capsid protein. J Biol Chem 285: 39314 – 39328.en_US
dc.identifier.citedreferenceWissing S, Galloway NL, Greene WC. 2010. HIV‐1 Vif versus the APOBEC3 cytidine deaminases: An intracellular duel between pathogen and host restriction factors. Mol Aspects Med 31: 383 – 397.en_US
dc.identifier.citedreferenceWoelk CH, Beliakova‐Bethell N, Goicoechea M, Zhao Y, Du P, Rought SE, Lozach J, Perez‐Santiago J, Richman DD, Smith DM, Little SJ. 2010. Gene expression before HAART initiation predicts HIV‐infected individuals at risk of poor CD4+ T‐cell recovery. AIDS 24: 217 – 222.en_US
dc.identifier.citedreferenceWu JQ, Dwyer DE, Dyer WB, Yang YH, Wang B, Saksena NK. 2008. Transcriptional profiles in CD8+ T cells from HIV+ progressors on HAART are characterized by coordinated up‐regulation of oxidative phosphorylation enzymes and interferon responses. Virology 380: 124 – 135.en_US
dc.identifier.citedreferenceYohannes E, Ghosh SK, Jiang B, McCormick TS, Weinberg A, Hill E, Faddoul F, Chance MR. 2011. Proteomic signatures of human oral epithelial cells in HIV‐infected subjects. PLoS ONE 6: e27816.en_US
dc.identifier.citedreferenceZack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS. 1990. HIV‐1 entry into quiescent primary lymphocytes: Molecular analysis reveals a labile, latent viral structure. Cell 61: 213 – 222.en_US
dc.identifier.citedreferenceZhang J, Scadden DT, Crumpacker CS. 2007. Primitive hematopoietic cells resist HIV‐1 infection via p21. J Clin Invest 117: 473 – 481.en_US
dc.identifier.citedreferenceZhou Y, Zhang H, Siliciano JD, Siliciano RF. 2005. Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol 79: 2199 – 2210.en_US
dc.identifier.citedreferenceAl‐Harthi L, Voris J, Du W, Wright D, Nowicki M, Frederick T, Landay A, Kovacs A. 2006. Evaluating the impact of hepatitis C virus (HCV) on highly active antiretroviral therapy‐mediated immune responses in HCV/HIV‐coinfected women: Role of HCV on expression of primed/memory T cells. J Infect Dis 193: 1202 – 1210.en_US
dc.identifier.citedreferenceAl‐Mawsawi LQ, Neamati N. 2007. Blocking interactions between HIV‐1 integrase and cellular cofactors: An emerging antiretroviral strategy. Trends Pharmacol Sci 28: 526 – 535.en_US
dc.identifier.citedreferenceBenjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125: 279 – 284.en_US
dc.identifier.citedreferenceBiasin M, Piacentini L, Lo Caputo S, Kanari Y, Magri G, Trabattoni D, Naddeo V, Lopalco L, Clivio A, Cesana E, Fasano F, Bergamaschi C, Mazzotta F, Miyazawa M, Clerici M. 2007. Apolipoprotein B mRNA‐editing enzyme, catalytic polypeptide‐like 3G: A possible role in the resistance to HIV of HIV‐exposed seronegative individuals. J Infect Dis 195: 960 – 964.en_US
dc.identifier.citedreferenceBroder S. 2010. The development of antiretroviral therapy and its impact on the HIV‐1/AIDS pandemic. Antiviral Res 85: 1 – 18.en_US
dc.identifier.citedreferenceBukrinsky MI, Stanwick TL, Dempsey MP, Stevenson M. 1991. Quiescent T lymphocytes as an inducible virus reservoir in HIV‐1 infection. Science 254: 423 – 427.en_US
dc.identifier.citedreferenceCadogan M, Dalgleish AG. 2008. HIV immunopathogenesis and strategies for intervention. Lancet Infect Dis 8: 675 – 684.en_US
dc.identifier.citedreferenceChege D, Chai Y, Huibner S, McKinnon L, Wachihi C, Kimani M, Jaoko W, Kimani J, Ball TB, Plummer FA, Kaul R, Rebbapragada A. 2010. Evaluation of a quantitative real‐time PCR assay to measure HIV‐specific mucosal CD8+ T cell responses in the cervix. PLoS ONE 5: e13077.en_US
dc.identifier.citedreferenceChen H, Li C, Huang J, Cung T, Seiss K, Beamon J, Carrington MF, Porter LC, Burke PS, Yang Y, Ryan BJ, Liu R, Weiss RH, Pereyra F, Cress WD, Brass AL, Rosenberg ES, Walker BD, Yu XG, Lichterfeld M. 2011. CD4+ T cells from elite controllers resist HIV‐1 infection by selective upregulation of p21. J Clin Invest 121: 1549 – 1560.en_US
dc.identifier.citedreferenceCherepanov P, Maertens G, Proost P, Devreese B, Van Beeumen J, Engelborghs Y, De Clercq E, Debyser Z. 2003. HIV‐1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J Biol Chem 278: 372 – 381.en_US
dc.identifier.citedreferenceCho SJ, Drechsler H, Burke RC, Arens MQ, Powderly W, Davidson NO. 2006. APOBEC3F and APOBEC3G mRNA levels do not correlate with human immunodeficiency virus type 1 plasma viremia or CD4+ T‐cell count. J Virol 80: 2069 – 2072.en_US
dc.identifier.citedreferenceCiuffi A, Bushman FD. 2006. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet 22: 388 – 395.en_US
dc.identifier.citedreferenceCiuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F. 2005. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11: 1287 – 1289.en_US
dc.identifier.citedreferenceCiuffi A, Diamond TL, Hwang Y, Marshall HM, Bushman FD. 2006. Modulating target site selection during human immunodeficiency virus DNA integration in vitro with an engineered tethering factor. Hum Gene Ther 17: 960 – 967.en_US
dc.identifier.citedreferenceClark HF, Burke CJ, Volkin DB, Offit P, Ward RL, Bresee JS, Dennehy P, Gooch WM, Malacaman E, Matson D, Walter E, Watson B, Krah DL, Dallas MJ, Schodel F, Kaplan KM, Heaton P. 2003. Safety, immunogenicity and efficacy in healthy infants of G1 and G2 human reassortant rotavirus vaccine in a new stabilizer/buffer liquid formulation. Pediatr Infect Dis J 22: 914 – 920.en_US
dc.identifier.citedreferenceCozzi‐Lepri A, Phillips AN, Ruiz L, Clotet B, Loveday C, Kjaer J, Mens H, Clumeck N, Viksna L, Antunes F, Machala L, Lundgren JD. 2007. Evolution of drug resistance in HIV‐infected patients remaining on a virologically failing combination antiretroviral therapy regimen. AIDS 21: 721 – 732.en_US
dc.identifier.citedreferenceCsermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. 1998. The 90‐kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79: 129 – 168.en_US
dc.identifier.citedreferenceFatma N, Singh DP, Shinohara T, Chylack LT Jr. 2001. Transcriptional regulation of the antioxidant protein 2 gene, a thiol‐specific antioxidant, by lens epithelium‐derived growth factor to protect cells from oxidative stress. J Biol Chem 276: 48899 – 48907.en_US
dc.identifier.citedreferenceGe H, Si Y, Roeder RG. 1998. Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J 17: 6723 – 6729.en_US
dc.identifier.citedreferenceGoh WC, Rogel ME, Kinsey CM, Michael SF, Fultz PN, Nowak MA, Hahn BH, Emerman M. 1998. HIV‐1 Vpr increases viral expression by manipulation of the cell cycle: A mechanism for selection of Vpr in vivo. Nat Med 4: 65 – 71.en_US
dc.identifier.citedreferenceHombrouck A, De Rijck J, Hendrix J, Vandekerckhove L, Voet A, De Maeyer M, Witvrouw M, Engelborghs Y, Christ F, Gijsbers R, Debyser Z. 2007. Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. PLoS Pathog 3: e47.en_US
dc.identifier.citedreferenceJayadev S, Yun B, Nguyen H, Yokoo H, Morrison RS, Garden GA. 2007. The glial response to CNS HIV infection includes p53 activation and increased expression of p53 target genes. J Neuroimmune Pharmacol 2: 359 – 370.en_US
dc.identifier.citedreferenceJin X, Brooks A, Chen H, Bennett R, Reichman R, Smith H. 2005. APOBEC3G/CEM15 (hA3G) mRNA levels associate inversely with human immunodeficiency virus viremia. J Virol 79: 11513 – 11516.en_US
dc.identifier.citedreferenceKim YS, Alarcon SV, Lee S, Lee MJ, Giaccone G, Neckers L, Trepel JB. 2009. Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem 9: 1479 – 1492.en_US
dc.identifier.citedreferenceLuo K, Wang T, Liu B, Tian C, Xiao Z, Kappes J, Yu XF. 2007. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J Virol 81: 7238 – 7248.en_US
dc.identifier.citedreferenceMcMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. 2010. The immune response during acute HIV‐1 infection: Clues for vaccine development. Nat Rev Immunol 10: 11 – 23.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.