Validity of the Michaelis–Menten equation – steady‐state or reactant stationary assumption: that is the question
dc.contributor.author | Schnell, Santiago | en_US |
dc.date.accessioned | 2014-02-11T17:57:10Z | |
dc.date.available | 2015-03-02T14:35:33Z | en_US |
dc.date.issued | 2014-01 | en_US |
dc.identifier.citation | Schnell, Santiago (2014). "Validity of the Michaelis–Menten equation – steady‐state or reactant stationary assumption: that is the question." FEBS Journal (2): 464-472. | en_US |
dc.identifier.issn | 1742-464X | en_US |
dc.identifier.issn | 1742-4658 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/102681 | |
dc.publisher | John Wiley & Sons Inc, New York. | en_US |
dc.subject.other | Rapid‐Equilibrium Assumption | en_US |
dc.subject.other | Reactant Stationary Assumption | en_US |
dc.subject.other | Steady‐State Assumption | en_US |
dc.subject.other | Enzyme Kinetics | en_US |
dc.subject.other | Initial Rate Experiments | en_US |
dc.subject.other | Limiting Rate | en_US |
dc.subject.other | Michaelis–Menten Constant | en_US |
dc.title | Validity of the Michaelis–Menten equation – steady‐state or reactant stationary assumption: that is the question | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Biological Chemistry | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/102681/1/febs12564.pdf | |
dc.identifier.doi | 10.1111/febs.12564 | en_US |
dc.identifier.source | FEBS Journal | en_US |
dc.identifier.citedreference | Segel LA & Slemrod M ( 1989 ) The quasi‐steady‐state assumption: a case study in perturbation. SIAM Rev Soc Ind Appl Math 31, 446 – 477. | en_US |
dc.identifier.citedreference | Reich JG & Sel'kov EE ( 1974 ) Mathematical analysis of metabolic networks. FEBS Lett 40, S119 – S127. | en_US |
dc.identifier.citedreference | Klonowski W ( 1983 ) Simplifying principles for chemical and enzyme reaction kinetics. Biophys Chem 18, 73 – 87. | en_US |
dc.identifier.citedreference | Schnell S & Maini PK ( 2000 ) Enzyme kinetics at high enzyme concentration. Bull Math Biol 62, 483 – 499. | en_US |
dc.identifier.citedreference | Palsson BO & Lightfoot EN ( 1984 ) Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis–Menten kinetics. J Theor Biol 111, 273 – 302. | en_US |
dc.identifier.citedreference | Palsson BO ( 1987 ) On the dynamics of the irreversible Michaelis–Menten reaction mechanism. Chem Eng Sci 42, 447 – 458. | en_US |
dc.identifier.citedreference | de la Selva SMT, Piña E & García‐Colín LS ( 1996 ) On the simple Michaelis–Menten mechanism for chemical reactions. J Math Chem 19, 175 – 191. | en_US |
dc.identifier.citedreference | Schauer M & Heinrich R ( 1979 ) Analysis of the quasi‐steady‐state approximation for an enzymatic one‐substrate reaction. J Theor Biol 79, 425 – 442. | en_US |
dc.identifier.citedreference | Borghans JA, de Boer RJ & Segel LA ( 1996 ) Extending the quasi‐steady state approximation by changing variables. Bull Math Biol 58, 43 – 63. | en_US |
dc.identifier.citedreference | Tzafriri AR ( 2003 ) Michaelis–Menten kinetics at high enzyme concentrations. Bull Math Biol 65, 1111 – 1129. | en_US |
dc.identifier.citedreference | Tzafriri AR & Edelman ER ( 2004 ) The total quasi‐steady‐state approximation is valid for reversible enzyme kinetics. J Theor Biol 226, 303 – 313. | en_US |
dc.identifier.citedreference | Ciliberto A, Capuani F & Tyson JJ ( 2007 ) Modeling networks of coupled enzymatic reactions using the total quasi‐steady state approximation. PLoS Comput Biol 3, e45. | en_US |
dc.identifier.citedreference | Pedersen MG, Bersani AM & Bersani E ( 2008 ) Quasi steady‐state approximations in complex intracellular signal transduction networks – a word of caution. J Math Chem 43, 1318 – 1344. | en_US |
dc.identifier.citedreference | Hanson SM & Schnell S ( 2008 ) Reactant stationary approximation in enzyme kinetics. J Phys Chem A 112, 8654 – 8658. | en_US |
dc.identifier.citedreference | Côme GM ( 1979 ) Mechanistic modeling of homogeneous reactors: a numerical method. Comput Chem Eng 3, 603 – 609. | en_US |
dc.identifier.citedreference | Igamberdiev AU & Roussel MR ( 2012 ) Feedforward non‐Michaelis–Menten mechanism for CO 2 uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation. Biosystems 107, 158 – 166. | en_US |
dc.identifier.citedreference | Schnell S & Mendoza C ( 1997 ) Closed form solution for time‐dependent enzyme kinetics. J Theor Biol 187, 207 – 212. | en_US |
dc.identifier.citedreference | Schnell S & Mendoza C ( 2000 ) Time‐dependent closed form solutions for fully competitive enzyme reactions. Bull Math Biol 62, 321 – 336. | en_US |
dc.identifier.citedreference | Schnell S & Mendoza C ( 2001 ) A fast method to estimate kinetic constants for enzyme inhibitors. Acta Biotheor 49, 109 – 113. | en_US |
dc.identifier.citedreference | Schnell S & Mendoza C ( 2000 ) Enzyme kinetics of multiple alternative substrates. J Math Chem 27, 155 – 170. | en_US |
dc.identifier.citedreference | Segel IH ( 1975 ) Enzyme Kinetics. Behavior and Analysis of Rapid‐Equilibrium and Steady‐State Enzyme Systems. John Wiley & Sons Inc, New York. | en_US |
dc.identifier.citedreference | Cornish‐Bowden A ( 2012 ) Fundamentals of Enzyme Kinetics, 4th edn. Wiley‐VCH, Weinheim, Germany. | en_US |
dc.identifier.citedreference | Fersht A ( 1999 ) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W.H. Freeman and Company, New York. | en_US |
dc.identifier.citedreference | Cornish‐Bowden A ( 2013 ) The origins of enzyme kinetics. FEBS Lett 587, 2725 – 2730. | en_US |
dc.identifier.citedreference | Schnell S & Maini PK ( 2003 ) A century of enzyme kinetics: reliability of the K M and v max estimates. Comments Theor Biol 8, 169 – 187. | en_US |
dc.identifier.citedreference | Segel LA ( 1988 ) On the validity of the steady state assumption of enzyme kinetics. Bull Math Biol 50, 579 – 593. | en_US |
dc.identifier.citedreference | Henri V ( 1902 ) Théorie générale de l'action de quelques diastases. C R Acad Sci Paris 135, 916 – 919 | en_US |
dc.identifier.citedreference | Henri V ( 1903 ) Lois Générales de L'Action des Diastases. Librairie Scientifique A. Hermann, Paris. | en_US |
dc.identifier.citedreference | Marangoni AG ( 2003 ) Enzyme Kinetics: A Modern Approach. Wiley‐Interscience, Hoboken, NJ. | en_US |
dc.identifier.citedreference | Michaelis L & Menten ML ( 1913 ) Die kinetik der invertinwirkung. Biochem Z 49, 333 – 369. | en_US |
dc.identifier.citedreference | Johnson KA & Goody RS ( 2011 ) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264 – 8269. | en_US |
dc.identifier.citedreference | Fraser SJ ( 1988 ) The steady‐state and equilibrium approximations: a geometrical picture. J Chem Phys 88, 4732 – 4738. | en_US |
dc.identifier.citedreference | Roussel MR & Fraser SJ ( 1990 ) Geometry of the steady‐state approximation: perturbation and accelerated convergence methods. J Chem Phys 93, 1072 – 1081. | en_US |
dc.identifier.citedreference | Briggs GE & Haldane JB ( 1925 ) A note on the kinetics of enzyme action. Biochem J 19, 338 – 339. | en_US |
dc.identifier.citedreference | Laidler KJ ( 1955 ) Theory of the transient phase in kinetics, with special reference to enzyme systems. Can J Chem 33, 1614 – 1624. | en_US |
dc.identifier.citedreference | Hommes FA ( 1962 ) Analog computer studies of a simple enzyme‐catalyzed reaction. Arch Biochem Biophys 96, 32 – 36. | en_US |
dc.identifier.citedreference | Walter CF & Morales MF ( 1964 ) An analogue computer investigation of certain issues in enzyme kinetics. J Biol Chem 239, 1277 – 1283. | en_US |
dc.identifier.citedreference | Walter C ( 1966 ) Quasi‐steady state in a general enzyme system. J Theor Biol 11, 181 – 206. | en_US |
dc.identifier.citedreference | Wong JT ( 1965 ) On the steady‐state method of enzyme kinetics. J Am Chem Soc 87, 1788 – 1793. | en_US |
dc.identifier.citedreference | Stayton MM & Fromm HJ ( 1979 ) A computer analysis of the validity of the integrated Michaelis–Menten equation. J Theor Biol 78, 309 – 323. | en_US |
dc.identifier.citedreference | Seshadri MS & Fritzsch G ( 1980 ) Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure. Biophys Struct Mech 6, 111 – 123. | en_US |
dc.identifier.citedreference | Seshadri MS & Fritzsch G ( 1981 ) The time evolution of sequential enzyme reactions: a singular perturbation approach. J Theor Biol 93, 197 – 205. | en_US |
dc.identifier.citedreference | Heineken FG, Tsuchiya HM & Aris R ( 1967 ) On the mathematical status of the pseudo‐steady state hypothesis of biochemical kinetics. Math Biosci 1, 95 – 113. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.