Show simple item record

Validity of the Michaelis–Menten equation – steady‐state or reactant stationary assumption: that is the question

dc.contributor.authorSchnell, Santiagoen_US
dc.date.accessioned2014-02-11T17:57:10Z
dc.date.available2015-03-02T14:35:33Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationSchnell, Santiago (2014). "Validity of the Michaelis–Menten equation – steady‐state or reactant stationary assumption: that is the question." FEBS Journal (2): 464-472.en_US
dc.identifier.issn1742-464Xen_US
dc.identifier.issn1742-4658en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102681
dc.publisherJohn Wiley & Sons Inc, New York.en_US
dc.subject.otherRapid‐Equilibrium Assumptionen_US
dc.subject.otherReactant Stationary Assumptionen_US
dc.subject.otherSteady‐State Assumptionen_US
dc.subject.otherEnzyme Kineticsen_US
dc.subject.otherInitial Rate Experimentsen_US
dc.subject.otherLimiting Rateen_US
dc.subject.otherMichaelis–Menten Constanten_US
dc.titleValidity of the Michaelis–Menten equation – steady‐state or reactant stationary assumption: that is the questionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102681/1/febs12564.pdf
dc.identifier.doi10.1111/febs.12564en_US
dc.identifier.sourceFEBS Journalen_US
dc.identifier.citedreferenceSegel LA & Slemrod M ( 1989 ) The quasi‐steady‐state assumption: a case study in perturbation. SIAM Rev Soc Ind Appl Math 31, 446 – 477.en_US
dc.identifier.citedreferenceReich JG & Sel'kov EE ( 1974 ) Mathematical analysis of metabolic networks. FEBS Lett 40, S119 – S127.en_US
dc.identifier.citedreferenceKlonowski W ( 1983 ) Simplifying principles for chemical and enzyme reaction kinetics. Biophys Chem 18, 73 – 87.en_US
dc.identifier.citedreferenceSchnell S & Maini PK ( 2000 ) Enzyme kinetics at high enzyme concentration. Bull Math Biol 62, 483 – 499.en_US
dc.identifier.citedreferencePalsson BO & Lightfoot EN ( 1984 ) Mathematical modelling of dynamics and control in metabolic networks. I. On Michaelis–Menten kinetics. J Theor Biol 111, 273 – 302.en_US
dc.identifier.citedreferencePalsson BO ( 1987 ) On the dynamics of the irreversible Michaelis–Menten reaction mechanism. Chem Eng Sci 42, 447 – 458.en_US
dc.identifier.citedreferencede la Selva SMT, Piña E & García‐Colín LS ( 1996 ) On the simple Michaelis–Menten mechanism for chemical reactions. J Math Chem 19, 175 – 191.en_US
dc.identifier.citedreferenceSchauer M & Heinrich R ( 1979 ) Analysis of the quasi‐steady‐state approximation for an enzymatic one‐substrate reaction. J Theor Biol 79, 425 – 442.en_US
dc.identifier.citedreferenceBorghans JA, de Boer RJ & Segel LA ( 1996 ) Extending the quasi‐steady state approximation by changing variables. Bull Math Biol 58, 43 – 63.en_US
dc.identifier.citedreferenceTzafriri AR ( 2003 ) Michaelis–Menten kinetics at high enzyme concentrations. Bull Math Biol 65, 1111 – 1129.en_US
dc.identifier.citedreferenceTzafriri AR & Edelman ER ( 2004 ) The total quasi‐steady‐state approximation is valid for reversible enzyme kinetics. J Theor Biol 226, 303 – 313.en_US
dc.identifier.citedreferenceCiliberto A, Capuani F & Tyson JJ ( 2007 ) Modeling networks of coupled enzymatic reactions using the total quasi‐steady state approximation. PLoS Comput Biol 3, e45.en_US
dc.identifier.citedreferencePedersen MG, Bersani AM & Bersani E ( 2008 ) Quasi steady‐state approximations in complex intracellular signal transduction networks – a word of caution. J Math Chem 43, 1318 – 1344.en_US
dc.identifier.citedreferenceHanson SM & Schnell S ( 2008 ) Reactant stationary approximation in enzyme kinetics. J Phys Chem A 112, 8654 – 8658.en_US
dc.identifier.citedreferenceCôme GM ( 1979 ) Mechanistic modeling of homogeneous reactors: a numerical method. Comput Chem Eng 3, 603 – 609.en_US
dc.identifier.citedreferenceIgamberdiev AU & Roussel MR ( 2012 ) Feedforward non‐Michaelis–Menten mechanism for CO 2 uptake by Rubisco: contribution of carbonic anhydrases and photorespiration to optimization of photosynthetic carbon assimilation. Biosystems 107, 158 – 166.en_US
dc.identifier.citedreferenceSchnell S & Mendoza C ( 1997 ) Closed form solution for time‐dependent enzyme kinetics. J Theor Biol 187, 207 – 212.en_US
dc.identifier.citedreferenceSchnell S & Mendoza C ( 2000 ) Time‐dependent closed form solutions for fully competitive enzyme reactions. Bull Math Biol 62, 321 – 336.en_US
dc.identifier.citedreferenceSchnell S & Mendoza C ( 2001 ) A fast method to estimate kinetic constants for enzyme inhibitors. Acta Biotheor 49, 109 – 113.en_US
dc.identifier.citedreferenceSchnell S & Mendoza C ( 2000 ) Enzyme kinetics of multiple alternative substrates. J Math Chem 27, 155 – 170.en_US
dc.identifier.citedreferenceSegel IH ( 1975 ) Enzyme Kinetics. Behavior and Analysis of Rapid‐Equilibrium and Steady‐State Enzyme Systems. John Wiley & Sons Inc, New York.en_US
dc.identifier.citedreferenceCornish‐Bowden A ( 2012 ) Fundamentals of Enzyme Kinetics, 4th edn. Wiley‐VCH, Weinheim, Germany.en_US
dc.identifier.citedreferenceFersht A ( 1999 ) Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W.H. Freeman and Company, New York.en_US
dc.identifier.citedreferenceCornish‐Bowden A ( 2013 ) The origins of enzyme kinetics. FEBS Lett 587, 2725 – 2730.en_US
dc.identifier.citedreferenceSchnell S & Maini PK ( 2003 ) A century of enzyme kinetics: reliability of the K M and v max estimates. Comments Theor Biol 8, 169 – 187.en_US
dc.identifier.citedreferenceSegel LA ( 1988 ) On the validity of the steady state assumption of enzyme kinetics. Bull Math Biol 50, 579 – 593.en_US
dc.identifier.citedreferenceHenri V ( 1902 ) Théorie générale de l'action de quelques diastases. C R Acad Sci Paris 135, 916 – 919en_US
dc.identifier.citedreferenceHenri V ( 1903 ) Lois Générales de L'Action des Diastases. Librairie Scientifique A. Hermann, Paris.en_US
dc.identifier.citedreferenceMarangoni AG ( 2003 ) Enzyme Kinetics: A Modern Approach. Wiley‐Interscience, Hoboken, NJ.en_US
dc.identifier.citedreferenceMichaelis L & Menten ML ( 1913 ) Die kinetik der invertinwirkung. Biochem Z 49, 333 – 369.en_US
dc.identifier.citedreferenceJohnson KA & Goody RS ( 2011 ) The original Michaelis constant: translation of the 1913 Michaelis–Menten paper. Biochemistry 50, 8264 – 8269.en_US
dc.identifier.citedreferenceFraser SJ ( 1988 ) The steady‐state and equilibrium approximations: a geometrical picture. J Chem Phys 88, 4732 – 4738.en_US
dc.identifier.citedreferenceRoussel MR & Fraser SJ ( 1990 ) Geometry of the steady‐state approximation: perturbation and accelerated convergence methods. J Chem Phys 93, 1072 – 1081.en_US
dc.identifier.citedreferenceBriggs GE & Haldane JB ( 1925 ) A note on the kinetics of enzyme action. Biochem J 19, 338 – 339.en_US
dc.identifier.citedreferenceLaidler KJ ( 1955 ) Theory of the transient phase in kinetics, with special reference to enzyme systems. Can J Chem 33, 1614 – 1624.en_US
dc.identifier.citedreferenceHommes FA ( 1962 ) Analog computer studies of a simple enzyme‐catalyzed reaction. Arch Biochem Biophys 96, 32 – 36.en_US
dc.identifier.citedreferenceWalter CF & Morales MF ( 1964 ) An analogue computer investigation of certain issues in enzyme kinetics. J Biol Chem 239, 1277 – 1283.en_US
dc.identifier.citedreferenceWalter C ( 1966 ) Quasi‐steady state in a general enzyme system. J Theor Biol 11, 181 – 206.en_US
dc.identifier.citedreferenceWong JT ( 1965 ) On the steady‐state method of enzyme kinetics. J Am Chem Soc 87, 1788 – 1793.en_US
dc.identifier.citedreferenceStayton MM & Fromm HJ ( 1979 ) A computer analysis of the validity of the integrated Michaelis–Menten equation. J Theor Biol 78, 309 – 323.en_US
dc.identifier.citedreferenceSeshadri MS & Fritzsch G ( 1980 ) Analytical solutions of a simple enzyme kinetic problem by a perturbative procedure. Biophys Struct Mech 6, 111 – 123.en_US
dc.identifier.citedreferenceSeshadri MS & Fritzsch G ( 1981 ) The time evolution of sequential enzyme reactions: a singular perturbation approach. J Theor Biol 93, 197 – 205.en_US
dc.identifier.citedreferenceHeineken FG, Tsuchiya HM & Aris R ( 1967 ) On the mathematical status of the pseudo‐steady state hypothesis of biochemical kinetics. Math Biosci 1, 95 – 113.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.