Show simple item record

Pt 3 Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene

dc.contributor.authorWang, Chenyuen_US
dc.contributor.authorLin, Cuikunen_US
dc.contributor.authorZhang, Lihuaen_US
dc.contributor.authorQuan, Zeweien_US
dc.contributor.authorSun, Kaien_US
dc.contributor.authorZhao, Boen_US
dc.contributor.authorWang, Fengen_US
dc.contributor.authorPorter, Nathanen_US
dc.contributor.authorWang, Yuxuanen_US
dc.contributor.authorFang, Jiyeen_US
dc.date.accessioned2014-02-11T17:57:13Z
dc.date.available2015-04-01T19:59:07Zen_US
dc.date.issued2014-02-03en_US
dc.identifier.citationWang, Chenyu; Lin, Cuikun; Zhang, Lihua; Quan, Zewei; Sun, Kai; Zhao, Bo; Wang, Feng; Porter, Nathan; Wang, Yuxuan; Fang, Jiye (2014). "Pt 3 Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene." Chemistry – A European Journal 20(6): 1753-1759.en_US
dc.identifier.issn0947-6539en_US
dc.identifier.issn1521-3765en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102689
dc.description.abstractWe report a facile synthesis route to prepare high‐quality Pt 3 Co nanocubes with a concave structure, and further demonstrate that these concave Pt 3 Co nanocubes are terminated with high‐index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high‐index planes by control binding of oleyl‐amine/oleic acid with a fine‐tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt 3 Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high‐index crystallographic planes exhibit an enhanced catalytic activity in comparison with low‐indexed surface terminated Pt 3 Co nanocubes in similar size. Anisotropic overgrowth : Pt 3 Co concave nanocubes bounded by high‐index facets were prepared with a facile wet‐chemical method. The formation process for such concave nanostructures was systematically studied, and a plausible mechanism was proposed. These nanocrystals can be used as advanced nanocatalysts, showing high activity and reusability toward hydrogenation of styrene (see figure).en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherAnisotropic Overgrowthen_US
dc.subject.otherPlatinumen_US
dc.subject.otherNanostructuresen_US
dc.subject.otherHydrogenationen_US
dc.subject.otherCatalytic Activityen_US
dc.titlePt 3 Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styreneen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (USA)en_US
dc.contributor.affiliationotherDepartment of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902 (USA), Fax: (+1) 607‐777‐4478en_US
dc.contributor.affiliationotherPresent address: EES‐14 and MPA‐MSID, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (USA)en_US
dc.contributor.affiliationotherMaterials Science and Engineering Program, State University of New York at Binghamton, Binghamton, New York 13902 (USA)en_US
dc.contributor.affiliationotherDepartment of Sustainable Energy Technology, Brookhaven National Laboratory, Upton, New York 11973 (USA)en_US
dc.contributor.affiliationotherCenter for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (USA)en_US
dc.contributor.affiliationotherDepartment of Chemistry, University of South Dakota, Vermillion, South Dakota 57069 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102689/1/chem_201301724_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102689/2/1753_ftp.pdf
dc.identifier.doi10.1002/chem.201301724en_US
dc.identifier.sourceChemistry – A European Journalen_US
dc.identifier.citedreferenceS.‐W. Chou, C.‐L. Zhu, S. Neeleshwar, C.‐L. Chen, Y.‐Y. Chen, C.‐C. Chen, Chem. Mater. 2009, 21, 4955 – 4961.en_US
dc.identifier.citedreferenceH. Zhang, W. Li, M. Jin, J. Zeng, T. Yu, D. Yang, Y. Xia, Nano Lett. 2011, 11, 898 – 903.en_US
dc.identifier.citedreferenceC. J. DeSantis, A. A. Peverly, D. G. Peters, S. E. Skrabalak, Nano Lett. 2011, 11, 2164 – 2168.en_US
dc.identifier.citedreferenceJ. Wu, J. Zhu, M. Zhou, Y. Hou, S. Gao, CrystEngComm 2012, 14, 7572 – 7575.en_US
dc.identifier.citedreferenceH. Zhang, M. Jin, J. Wang, W. Li, P. H. C. Camargo, M. J. Kim, D. Yang, Z. Xie, Y. Xia, J. Am. Chem. Soc. 2011, 133, 6078 – 6089.en_US
dc.identifier.citedreferenceN. Tian, Z.‐Y. Zhou, S.‐G. Sun, J. Phys. Chem. C 2008, 112, 19801 – 19817.en_US
dc.identifier.citedreferenceIt should be mentioned that sometimes small amount of W could be determined from the ICP analysis due to an incomplete cleaning of the alloy nanocrystals. Because the content of W was varied from time to time (depending on intenseness of the particle cleaning), it is believed that the determined content of W was from adsobates, which should be avoided in a catalytic test.en_US
dc.identifier.citedreferenceM. Chen, J. Kim, J. P. Liu, H. Fan, S. Sun, J. Am. Chem. Soc. 2006, 128, 7132 – 7133.en_US
dc.identifier.citedreferenceC. Wang, H. Daimon, Y. Lee, J. Kim, S. Sun, J. Am. Chem. Soc. 2007, 129, 6974 – 6975.en_US
dc.identifier.citedreferenceJ. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 2010, 10, 638 – 644.en_US
dc.identifier.citedreferenceJ. Zhang, J. Fang, J. Am. Chem. Soc. 2009, 131, 18543 – 18547.en_US
dc.identifier.citedreferenceY. Xiong, Y. Xia, Adv. Mater. 2007, 19, 3385 – 3391.en_US
dc.identifier.citedreferenceC. B. Murray, C. R. Kagan, M. G. Bawendi, Annu. Rev. Mater. Sci. 2000, 30, 545 – 610.en_US
dc.identifier.citedreferenceB. Wu, N. Zheng, G. Fu, Chem. Commun. 2011, 47, 1039 – 1041.en_US
dc.identifier.citedreferenceY. Kang, X. Ye, C. B. Murray, Angew. Chem. 2010, 122, 6292 – 6295; Angew. Chem. Int. Ed. 2010, 49, 6156 – 6159.en_US
dc.identifier.citedreferenceB. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu, Y. Xia, Science 2009, 324, 1302 – 1305.en_US
dc.identifier.citedreferenceD. Xu, Z. Liu, H. Yang, Q. Liu, J. Zhang, J. Fang, S. Zou, K. Sun, Angew. Chem. 2009, 121, 4281 – 4285; Angew. Chem. Int. Ed. 2009, 48, 4217 – 4221.en_US
dc.identifier.citedreferencePtCl 4 ‐based synthesis of Pt 3 Co nanocrystals was carried out same to that for Pt(acac) 2 ‐based synthesis described in the Experimental Section. The only difference is that Pt(acac) 2 was replaced by equal amount of Pt IV Cl 4.en_US
dc.identifier.citedreferenceN. Semagina, L. Kiwi‐Minsker, Catal. Rev. Sci. Eng. 2009, 51, 147 – 217.en_US
dc.identifier.citedreferenceB. Chen, U. Dingerdissen, J. G. E. Krauter, H. G. J. Lansink Rotgerink, K. Möbus, D. J. Ostgard, P. Panster, T. H. Riermeier, S. Seebald, T. Tacke, H. Trauthwein, Appl. Catal. A 2005, 280, 17 – 46.en_US
dc.identifier.citedreferenceG. A. Somorjai, Y. Borodko, Catal. Lett. 1999, 59, 89 – 91.en_US
dc.identifier.citedreferenceG. A. Somorjai, M. Yang, Top. Catal. 2003, 24, 61 – 72.en_US
dc.identifier.citedreferenceG. A. Somorjai, K. R. McCrea, J. Zhu, Top. Catal. 2002, 18, 157 – 166.en_US
dc.identifier.citedreferenceH. Yang, J. Zhang, K. Sun, S. Zou, J. Fang, Angew. Chem. 2010, 122, 7000 – 7003; Angew. Chem. Int. Ed. 2010, 49, 6848 – 6851.en_US
dc.identifier.citedreferenceN. C. Gardner, R. S. Hansen, J. Phys. Chem. 1970, 74, 3298 – 3299.en_US
dc.identifier.citedreferenceP. Dani, T. Karlen, R. A. Gossage, S. Gladiali, G. v. Koten, Angew. Chem. 2000, 112, 759 – 761; Angew. Chem. Int. Ed. 2000, 39, 743 – 745.en_US
dc.identifier.citedreferenceK. A. Manbeck, N. E. Musselwhite, L. M. Carl, C. A. Kauffman, O. D. Lyons, J. K. Navin, A. L. Marsh, Appl. Catal. A 2010, 384, 58 – 64.en_US
dc.identifier.citedreferenceG. A. Somorjai, J. Y. Park, Chem. Soc. Rev. 2008, 37, 2155 – 2162.en_US
dc.identifier.citedreferenceM. Krausa, W. Vielstich, J. Electroanal. Chem. 1994, 379, 307 – 314.en_US
dc.identifier.citedreferenceY. Tong, H. S. Kim, P. K. Babu, P. Waszczuk, A. Wieckowski, E. Oldfield, J. Am. Chem. Soc. 2002, 124, 468 – 473.en_US
dc.identifier.citedreferenceI. Nakamula, Y. Yamanoi, T. Imaoka, K. Yamamoto, H. Nishihara, Angew. Chem. 2011, 123, 5952 – 5955; Angew. Chem. Int. Ed. 2011, 50, 5830 – 5833.en_US
dc.identifier.citedreferenceN. Weitbrecht, M. Kratzat, S. Santoso, R. Schomäcker, Catal. Today 2003, 79–80, 401 – 408.en_US
dc.identifier.citedreferenceP. D. Vaidya, V. V. Mahajani, Appl. Catal. B 2004, 51, 21 – 31.en_US
dc.identifier.citedreferenceM. Neurock, J. Catal. 2003, 216, 73 – 88.en_US
dc.identifier.citedreferenceS. Schimpf, M. Lucas, C. Mohr, U. Rodemerck, A. Brückner, J. Radnik, H. Hofmeister, P. Claus, Catal. Today 2002, 72, 63 – 78.en_US
dc.identifier.citedreferenceB. Veisz, Z. Király, L. Tóth, B. Pécz, Chem. Mater. 2002, 14, 2882 – 2888.en_US
dc.identifier.citedreferenceM. Jin, H. Zhang, Z. Xie, Y. Xia, Angew. Chem. 2011, 123, 7996 – 8000; Angew. Chem. Int. Ed. 2011, 50, 7850 – 7854.en_US
dc.identifier.citedreferenceN. Tian, Z.‐Y. Zhou, N.‐F. Yu, L.‐Y. Wang, S.‐G. Sun, J. Am. Chem. Soc. 2010, 132, 7580 – 7581.en_US
dc.identifier.citedreferenceF. Wang, C. Li, L.‐D. Sun, H. Wu, T. Ming, J. Wang, J. C. Yu, C.‐H. Yan, J. Am. Chem. Soc. 2011, 133, 1106 – 1111.en_US
dc.identifier.citedreferenceZ.‐Y. Zhou, N. Tian, J.‐T. Li, I. Broadwell, S.‐G. Sun, Chem. Soc. Rev. 2011, 40, 4167 – 4185.en_US
dc.identifier.citedreferenceB. Lim, Y. Xia, Angew. Chem. 2011, 123, 78 – 87; Angew. Chem. Int. Ed. 2011, 50, 76 – 85.en_US
dc.identifier.citedreferenceD. W. Goodman, J. Catal. 2003, 216, 213 – 222.en_US
dc.identifier.citedreferenceP. Claus, Appl. Catal. A 2005, 291, 222 – 229.en_US
dc.identifier.citedreferenceZ. Quan, Y. Wang, J. Fang, Acc. Chem. Res. 2013, 46, 191 – 202.en_US
dc.identifier.citedreferenceY. Yu, Q. Zhang, B. Liu, J. Y. Lee, J. Am. Chem. Soc. 2010, 132, 18258 – 18265.en_US
dc.identifier.citedreferenceY. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. 2009, 121, 62 – 108; Angew. Chem. Int. Ed. 2009, 48, 60 – 103.en_US
dc.identifier.citedreferenceS. C. Tsang, N. Cailuo, W. Oduro, A. T. S. Kong, L. Clifton, K. M. K. Yu, B. Thiebaut, J. Cookson, P. Bishop, ACS Nano 2008, 2, 2547 – 2553.en_US
dc.identifier.citedreferenceI. Lee, F. Delbecq, R. Morales, M. A. Albiter, F. Zaera, Nat. Mater. 2009, 8, 132 – 138.en_US
dc.identifier.citedreferenceN. Tian, Z.‐Y. Zhou, S.‐G. Sun, Y. Ding, Z. L. Wang, Science 2007, 316, 732 – 735.en_US
dc.identifier.citedreferenceZ.‐Y. Zhou, N. Tian, Z.‐Z. Huang, D.‐J. Chen, S.‐G. Sun, Faraday Discuss. 2009, 140, 81 – 92.en_US
dc.identifier.citedreferenceX. Huang, Z. Zhao, J. Fan, Y. Tan, N. Zheng, J. Am. Chem. Soc. 2011, 133, 4718 – 4721.en_US
dc.identifier.citedreferenceT. Yu, D. Y. Kim, H. Zhang, Y. Xia, Angew. Chem. 2011, 123, 2825 – 2829; Angew. Chem. Int. Ed. 2011, 50, 2773 – 2777.en_US
dc.identifier.citedreferenceJ. Zhang, L. Zhang, S. Xie, Q. Kuang, X. Han, Z. Xie, L. Zheng, Chem. Eur. J. 2011, 17, 9915 – 9919.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.