Show simple item record

Systems pharmacology modeling: an approach to improving drug safety

dc.contributor.authorBai, Janeen_US
dc.date.accessioned2014-02-11T17:57:17Z
dc.date.available2015-03-02T14:35:33Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationBai, Jane (2014). "Systems pharmacology modeling: an approach to improving drug safety." Biopharmaceutics & Drug Disposition 35(1): 1-14.en_US
dc.identifier.issn0142-2782en_US
dc.identifier.issn1099-081Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102703
dc.description.abstractAdvances in systems biology in conjunction with the expansion in knowledge of drug effects and diseases present an unprecedented opportunity to extend traditional pharmacokinetic and pharmacodynamic modeling/analysis to conduct systems pharmacology modeling. Many drugs that cause liver injury and myopathies have been studied extensively. Mitochondrion‐centric systems pharmacology modeling is important since drug toxicity across a large number of pharmacological classes converges to mitochondrial injury and death. Approaches to systems pharmacology modeling of drug effects need to consider drug exposure, organelle and cellular phenotypes across all key cell types of human organs, organ‐specific clinical biomarkers/phenotypes, gene–drug interaction and immune responses. Systems modeling approaches, that leverage the knowledge base constructed from curating a selected list of drugs across a wide range of pharmacological classes, will provide a critically needed blueprint for making informed decisions to reduce the rate of attrition for drugs in development and increase the number of drugs with an acceptable benefit/risk ratio. Copyright © 2013 John Wiley & Sons, Ltd.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUniversity of Washingtonen_US
dc.subject.otherBiomarkers/Clinical Phenotypeen_US
dc.subject.otherCellular Phenotypeen_US
dc.subject.otherOrgan Injuryen_US
dc.subject.otherSystems Biologyen_US
dc.subject.otherMolecular Pathwaysen_US
dc.subject.otherMolecular Networksen_US
dc.subject.otherMitochondriaen_US
dc.subject.otherGene Drug Interactionen_US
dc.titleSystems pharmacology modeling: an approach to improving drug safetyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102703/1/bdd1871.pdf
dc.identifier.doi10.1002/bdd.1871en_US
dc.identifier.sourceBiopharmaceutics & Drug Dispositionen_US
dc.identifier.citedreferenceTujios S, Fontana RJ. Mechanisms of drug‐induced liver injury: from bedside to bench. Nat Rev Gastroenterol Hepatol 2011; 8: 202 – 211. doi: 10.1038/nrgastro.2011.22.en_US
dc.identifier.citedreferenceKossak BD, Schmidt‐Sommerfeld E, Schoeller DA, Rinaldo P, Penn D, Tonsgard JH. Impaired fatty acid oxidation in children on valproic acid and the effect of l ‐carnitine. Neurology 1993; 43: 2362 – 2368.en_US
dc.identifier.citedreferenceKolodkin A, Simeonidis E, Balling R, Westerhoff HV. Understanding complexity in neurodegenerative diseases: in silico reconstruction of emergence. Front Physiol 2012; 3: 291. doi: 10.3389/fphys.2012.00291.en_US
dc.identifier.citedreferenceCarreras MC, Poderoso JJ. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am J Physiol Cell Physiol 2007; 292: C1569 – C1580. doi: 10.1152/ajpcell.00248.2006.en_US
dc.identifier.citedreferencede Moura MB, dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ Mol Mutagen 2010; 51: 391 – 405. doi: 10.1002/em.20575.en_US
dc.identifier.citedreferenceCohen BH. Pharmacologic effects on mitochondrial function. Dev Disabil Res Rev 2010; 16: 189 – 199. doi: 10.1002/ddrr.106.en_US
dc.identifier.citedreferenceAnastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 2011; 334: 1278 – 1283. doi: 10.1126/science.1211485.en_US
dc.identifier.citedreferenceAmes BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 1983; 221: 1256 – 1264.en_US
dc.identifier.citedreferenceWaris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 2006; 5: 14. doi: 10.1186/1477‐3163‐5‐14.en_US
dc.identifier.citedreferenceBehrend L, Henderson G, Zwacka RM. Reactive oxygen species in oncogenic transformation. Biochem Soc Trans 2003; 31 ( 6 ): 1441 – 1444. doi: 10.1042/.en_US
dc.identifier.citedreferenceKlaunig JE, Kamendulis LM. The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 2004; 44: 239 – 267. doi: 10.1146/annurev.pharmtox.44.101802.121851.en_US
dc.identifier.citedreferenceZineh I, Woodcock J. Clinical pharmacology and the catalysis of regulatory science: opportunities for the advancement of drug development and evaluation. Clin Pharmacol Ther 2013; 93: 515 – 525. doi: 10.1038/clpt.2013.32.en_US
dc.identifier.citedreferenceDuarte NC, Becker SA, Jamshidi N, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 2007; 104: 1777 – 1782. doi: 10.1073/pnas.0610772104.en_US
dc.identifier.citedreferenceThiele I, Swainston N, Fleming RM, et al. A community‐driven global reconstruction of human metabolism. Nat Biotechnol 2013; 31: 419 – 425. doi: 10.1038/nbt.2488.en_US
dc.identifier.citedreferenceWang Y, Eddy JA, Price ND. Reconstruction of genome‐scale metabolic models for 126 human tissues using mCADRE. BMC Syst Biol 2012; 6: 153. doi: 10.1186/1752‐0509‐6‐153.en_US
dc.identifier.citedreferenceAgren R, Bordel S, Mardinoglu A, Pornputtapong N, Nookaew I, Nielsen J. Reconstruction of genome‐scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 2012; 8: e1002518. doi: 10.1371/journal.pcbi.1002518.en_US
dc.identifier.citedreferenceJerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue‐specific metabolic models: application to human liver metabolism. Mol Syst Biol 2010; 6: 401. doi: 10.1038/msb.2010.56.en_US
dc.identifier.citedreferenceForsyth BW, Horwitz RI, Acampora D, et al.. New epidemiologic evidence confirming that bias does not explain the aspirin/Reye's syndrome association. JAMA 1989; 261: 2517 – 2524.en_US
dc.identifier.citedreferenceBryant AE 3rd, Dreifuss FE. Valproic acid hepatic fatalities. III. U.S. experience since 1986. Neurology 1996; 46: 465 – 469.en_US
dc.identifier.citedreferenceMcKenzie R, Fried MW, Sallie R, et al.. Hepatic failure and lactic acidosis due to fialuridine (FIAU), an investigational nucleoside analogue for chronic hepatitis B. N Engl J Med 1995; 333: 1099 – 1105. doi: 10.1056/NEJM199510263331702.en_US
dc.identifier.citedreferenceCornejo‐Juarez P, Sierra‐Madero J, Volkow‐Fernandez P. Metabolic acidosis and hepatic steatosis in two HIV‐infected patients on stavudine (d4T) treatment. Arch Med Res 2003; 34: 64 – 69.en_US
dc.identifier.citedreferenceBissuel F, Bruneel F, Habersetzer F, et al. Fulminant hepatitis with severe lactate acidosis in HIV‐infected patients on didanosine therapy. J Intern Med 1994; 235: 367 – 371.en_US
dc.identifier.citedreferenceDe Vriese AS, Coster RV, Smet J, et al.. Linezolid‐induced inhibition of mitochondrial protein synthesis. Clin Infect Dis 2006; 42: 1111 – 1117. doi: 10.1086/501356.en_US
dc.identifier.citedreferenceDrugs@FDA. http://wwwaccessdatafdagov/scripts/cder/drugsatfda/indexcfm/ [January 2013 ].en_US
dc.identifier.citedreferenceTakai N, Tanaka Y, Inazawa K, Saji H. Quantitative analysis of pharmaceutical drug distribution in multiple organs by imaging mass spectrometry. Rapid Commun Mass Spectrom 2012; 26: 1549 – 1556. doi: 10.1002/rcm.6256.en_US
dc.identifier.citedreferenceHood L, Heath JR, Phelps ME, Lin B. Systems biology and new technologies enable predictive and preventative medicine. Science 2004; 5696: 640 – 643. doi: 10.1126/science.1104635.en_US
dc.identifier.citedreferenceWagner BK, Kitami T, Gilbert TJ, et al. Large‐scale chemical dissection of mitochondrial function. Nat Biotechnol 2008; 26: 343 – 351. doi: 10.1038/nbt1387.en_US
dc.identifier.citedreferenceMorikawa S, Murakami T, Yamazaki H, et al. Analysis of the global RNA expression profiles of skeletal muscle cells treated with statins. J Atheroscler Thromb 2005; 12: 121 – 131.en_US
dc.identifier.citedreferenceMeganathan K, Jagtap S, Wagh V, et al. Identification of thalidomide‐specific transcriptomics and proteomics signatures during differentiation of human embryonic stem cells. PLoS One 2012; 7: e44228. doi: 10.1371/journal.pone.0044228.en_US
dc.identifier.citedreferenceBai JP, Abernethy DR. Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu Rev Pharmacol Toxicol 2013; 53: 451 – 473. doi: 10.1146/annurev‐pharmtox‐011112‐140248.en_US
dc.identifier.citedreferenceCundy T, Mackay J. Proton pump inhibitors and severe hypomagnesaemia. Curr Opin Gastroenterol 2011; 27: 180 – 185. doi: 10.1097/MOG.0b013e32833ff5d6.en_US
dc.identifier.citedreferenceBai JP, Hausman E, Lionberger R, Zhang X. Modeling and simulation of the effect of proton pump inhibitors on magnesium homeostasis. 1. Oral absorption of magnesium. Mol Pharm 2012; 9: 3495 – 3505. doi: 10.1021/mp300323q.en_US
dc.identifier.citedreferenceMichalek W, Semler JR, Kuo B. Impact of acid suppression on upper gastrointestinal pH and motility. Dig Dis Sci 2011; 56: 1735 – 1742. doi: 10.1007/s10620‐010‐1479‐8.en_US
dc.identifier.citedreferenceKrug SM, Gunzel D, Conrad MP, et al. Charge‐selective claudin channels. Ann NY Acad Sci 2012; 1257: 20 – 28. doi: 10.1111/j.1749‐6632.2012.06555.x.en_US
dc.identifier.citedreferenceGroenestege WM, Hoenderop JG, van den Heuvel L, Knoers N, Bindels RJ. The epithelial Mg 2+ channel transient receptor potential melastatin 6 is regulated by dietary Mg 2+ content and estrogens. J Am Soc Nephrol 2006; 17: 1035 – 1043. doi: 10.1681/ASN.2005070700.en_US
dc.identifier.citedreferenceEfrati E, Hirsch A, Kladnitsky O, et al.. Transcriptional regulation of the claudin‐16 gene by Mg 2+ availability. Cell Physiol Biochem 2010; 25: 705 – 714. doi: 10.1159/000315090.en_US
dc.identifier.citedreferenceHowell BA, Yang Y, Kumar R, et al.. In vitro to in vivo extrapolation and species response comparisons for drug‐induced liver injury (DILI) using DILIsym: a mechanistic, mathematical model of DILI. J Pharmacokinet Pharmacodyn 2012; 39: 527 – 541. doi: 10.1007/s10928‐012‐9266‐0.en_US
dc.identifier.citedreferenceAnderson S, Bankier AT, Barrell BG, et al.. Sequence and organization of the human mitochondrial genome. Nature 1981; 290: 457 – 465.en_US
dc.identifier.citedreferenceDiMauro S, Schon EA. Mitochondrial respiratory‐chain diseases. N Engl J Med 2003; 348: 2656 – 2668. doi: 10.1056/NEJMra022567.en_US
dc.identifier.citedreferenceLaaksonen R, Katajamaa M, Paiva H, et al. A systems biology strategy reveals biological pathways and plasma biomarker candidates for potentially toxic statin‐induced changes in muscle. PLoS One 2006; 1: e97. doi: 10.1371/journal.pone.0000097.en_US
dc.identifier.citedreferenceHuan T, Zhang B, Wang Z, et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol 2013; 33: 1427 – 1434. doi: 10.1161/ATVBAHA.112.300112.en_US
dc.identifier.citedreferencePagon RA, Editor‐in‐chief, Bird TD, Dolan CR, Stephens K, Adam MP. GeneReviews™. University of Washington: Seattle; 1993 – 2013.en_US
dc.identifier.citedreferenceConnectivity Map. http://wwwbroadinstituteorg/genome_bio/connectivitymaphtml/ [ January, 2013 ].en_US
dc.identifier.citedreferenceGene Expression Omnibus (GEO). http://wwwncbinlmnihgov/geo/ [ January, 2012 ].en_US
dc.identifier.citedreferenceHanna AD, Janczura M, Cho E, Dulhunty AF, Beard NA. Multiple actions of the anthracycline daunorubicin on cardiac ryanodine receptors. Mol Pharmacol 2011; 80: 538 – 549. doi: 10.1124/mol.111.073478.en_US
dc.identifier.citedreferenceMohaupt MG, Karas RH, Babiychuk EB, et al.. Association between statin‐associated myopathy and skeletal muscle damage. CMAJ 2009; 181: E11 – E18. doi: 10.1503/cmaj.081785.en_US
dc.identifier.citedreferenceMarciante KD, Durda JP, Heckbert SR, et al. Cerivastatin, genetic variants, and the risk of rhabdomyolysis. Pharmacogenet Genomics 2011; 21: 280 – 288. doi: 10.1097/FPC.0b013e328343dd7d.en_US
dc.identifier.citedreferenceKegg pathway Database. http://wwwgenomejp/kegg/kegg1html/ [May 2013 ].en_US
dc.identifier.citedreferenceKirouac DC, Saez‐Rodriguez J, Swantek J, Burke JM, Lauffenburger DA, Sorger PK. Creating and analyzing pathway and protein interaction compendia for modelling signal transduction networks. BMC Syst Biol 2012; 6: 29. doi: 10.1186/1752‐0509‐6‐29.en_US
dc.identifier.citedreferenceTable of Pharmacogenomic Biomarkers in Drug Labels. http://wwwfdagov/Drugs/ScienceResearch/ResearchAreas/Pharmacogenetics/ucm083378htm/ [May 2013 ].en_US
dc.identifier.citedreferenceChin EL, da Silva C, Hegde M. Assessment of clinical analytical sensitivity and specificity of next‐generation sequencing for detection of simple and complex mutations. BMC Genet 2013; 14: 6. doi: 10.1186/1471‐2156‐14‐6.en_US
dc.identifier.citedreferenceSkotland T. Molecular imaging: challenges of bringing imaging of intracellular targets into common clinical use. Contrast Media Mol Imaging 2012; 7: 1 – 6. doi: 10.1002/cmmi.458.en_US
dc.identifier.citedreferenceBordbar A, Feist AM, Usaite‐Black R, Woodcock J, Palsson BO, Famili I. A multi‐tissue type genome‐scale metabolic network for analysis of whole‐body systems physiology. BMC Syst Biol 2011; 5: 180. doi: 10.1186/1752‐0509‐5‐180.en_US
dc.identifier.citedreferenceLeMasters JJ, Hepatotoxicity due to mitochondrial injury drug induced liver disease. In Drug‐Induced Liver Disease, Kaplowitz N, DeLeve LD (eds). Marcel Dekker, Inc: New York, 85 – 97. ISBN: 9780123878175, 2013; 85 – 97.en_US
dc.identifier.citedreferenceMartin JL, Brown CE, Matthews‐Davis N, Reardon JE. Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob Agents Chemother 1994; 38: 2743 – 2749.en_US
dc.identifier.citedreferenceStewart JD, Horvath R, Baruffini E, et al.. Polymerase gamma gene POLG determines the risk of sodium valproate‐induced liver toxicity. Hepatology 2010; 52: 1791 – 1796. doi: 10.1002/hep.23891.en_US
dc.identifier.citedreferenceIgoudjil A, Massart J, Begriche K, Descatoire V, Robin MA, Fromenty B. High concentrations of stavudine impair fatty acid oxidation without depleting mitochondrial DNA in cultured rat hepatocytes. Toxicol In Vitro 2008; 22: 887 – 898. doi: 10.1016/j.tiv.2008.01.011.en_US
dc.identifier.citedreferenceRobinson MJ, Rywlin AM. Tetracycline‐associated fatty liver in the male. Report of an autopsied case. Am J Dig Dis 1970; 15: 857 – 862.en_US
dc.identifier.citedreferenceBleeker‐Rovers CP, Kadir SW, van Leusen R, Richter C. Hepatic steatosis and lactic acidosis caused by stavudine in an HIV‐infected patient. Neth J Med 2000; 57: 190 – 193.en_US
dc.identifier.citedreferenceLarosche I, Letteron P, Fromenty B, et al.. Tamoxifen inhibits topoisomerases, depletes mitochondrial DNA, and triggers steatosis in mouse liver. J Pharmacol Exp Ther 2007; 321: 526 – 535. doi: 10.1124/jpet.106.114546.en_US
dc.identifier.citedreferenceFreiman JP, Helfert KE, Hamrell MR, Stein DS. Hepatomegaly with severe steatosis in HIV‐seropositive patients. Aids 1993; 7: 379 – 385.en_US
dc.identifier.citedreferenceMelegh B, Trombitas K. Valproate treatment induces lipid globule accumulation with ultrastructural abnormalities of mitochondria in skeletal muscle. Neuropediatrics 1997; 28: 257 – 261. doi: 10.1055/s‐2007‐973710.en_US
dc.identifier.citedreferenceFujimura H, Murakami N, Kurabe M, Toriumi W. In vitro assay for drug‐induced hepatosteatosis using rat primary hepatocytes, a fluorescent lipid analog and gene expression analysis. J Appl Toxicol 2009; 29: 356 – 363. doi: 10.1002/jat.1420.en_US
dc.identifier.citedreferenceLim SW, Hyoung BJ, Piao SG, Doh KC, Chung BH, Yang CW. Chronic cyclosporine nephropathy is characterized by excessive autophagosome formation and decreased autophagic clearance. Transplantation 2012; 94: 218 – 225. doi: 10.1097/TP.0b013e31825ace5c.en_US
dc.identifier.citedreferenceZinman L, Sadeghi R, Gawel M, Patton D, Kiss A. Are statin medications safe in patients with ALS? Amyotroph Lateral Scler 2008; 9: 223 – 228. doi: 10.1080/17482960802031092.en_US
dc.identifier.citedreferenceMurinson BB, Haughey NJ, Maragakis NJ. Selected statins produce rapid spinal motor neuron loss in vitro. BMC Musculoskelet Disord 2012; 3: 100. doi: 10.1186/1471‐2474‐13‐100.en_US
dc.identifier.citedreferenceGarrabou G, Soriano A, Lopez S, et al. Reversible inhibition of mitochondrial protein synthesis during linezolid‐related hyperlactatemia. Antimicrob Agents Chemother 2007; 51: 962 – 967. doi: 10.1128/AAC.01190‐06.en_US
dc.identifier.citedreferenceMontaigne D, Hurt C, Neviere R. Mitochondria death/survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer‐targeted therapies. Biochem Res Int 2012; 2012: 951539. doi: 10.1155/2012/951539.en_US
dc.identifier.citedreferenceUyemura SA, Santos AC, Mingatto FE, Jordani MC, Curti C. Diclofenac sodium and mefenamic acid: potent inducers of the membrane permeability transition in renal cortex mitochondria. Arch Biochem Biophys 1997; 342: 231 – 235. doi: 10.1006/abbi.1997.9985.en_US
dc.identifier.citedreferenceFurberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001; 2: 205 – 207.en_US
dc.identifier.citedreferenceHan D, Shinohara M, Ybanez MD, Saberi B, Kaplowitz N. Signal transduction path ways involved in drug‐induced liver injury. Handb Exp Pharmacol 2010; 196: 267 – 310. doi: 10.1007/978‐3‐642‐00663‐0_10.en_US
dc.identifier.citedreferenceFisher JE, McKenzie TJ, Lillegard JB, et al. Role of Kupffer cells and toll‐like receptor 4 in acetaminophen‐induced acute liver failure. J Surg Res 2013; 180: 147 – 155. doi: 10.1016/j.jss.2012.11.051.en_US
dc.identifier.citedreferenceOka T, Hikoso S, Yamaguchi O, et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 2012; 485: 251 – 255. doi: 10.1038/nature10992.en_US
dc.identifier.citedreferenceCasalena G, Daehn I, Bottinger E. Transforming growth factor‐beta, bioenergetics, and mitochondria in renal disease. Semin Nephrol 2012; 32: 295 – 303. doi: 10.1016/j.semnephrol.2012.04.009.en_US
dc.identifier.citedreferenceXie XL, Wei M, Kakehashi A, Yamano S, Tajiri M, Wanibuchi H. 2‐Amino‐3‐methylimidazo[4,5‐f]quinoline (IQ) promotes mouse hepatocarcinogenesis by activating transforming growth factor‐beta and Wnt/beta‐catenin signaling pathways. Toxicol Sci 2012; 125: 392 – 400. doi: 10.1093/toxsci/kfr314.en_US
dc.identifier.citedreferenceJantzen K, Roursgaard M, Desler C, Loft S, Rasmussen LJ, Moller P. Oxidative damage to DNA by diesel exhaust particle exposure in co‐cultures of human lung epithelial cells and macrophages. Mutagenesis 2012; 27: 693 – 701. doi: 10.1093/mutage/ges035.en_US
dc.identifier.citedreferenceHung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine‐induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16: 297 – 306. doi: 10.1097/01.fpc.0000199500.46842.4a.en_US
dc.identifier.citedreferenceArcher SL, Marsboom G, Kim GH, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target. Circulation 2010; 121: 2661 – 2671. doi: 10.1161/CIRCULATIONAHA.109.916098.en_US
dc.identifier.citedreferenceVockley J, Rinaldo P, Bennett MJ, Matern D, Vladutiu GD. Synergistic heterozygosity: disease resulting from multiple partial defects in one or more metabolic pathways. Mol Genet Metab 2000; 71: 10 – 18. doi: 10.1006/mgme.2000.3066.en_US
dc.identifier.citedreferenceKohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 2008; 82: 949 – 958. doi: 10.1007/s12012‐008‐9015‐1.en_US
dc.identifier.citedreferenceWarren JD, Blumbergs PC, Thompson PD. Rhabdomyolysis: a review. Muscle Nerve 2002; 25: 332 – 347.en_US
dc.identifier.citedreferenceBai JP, Lesko LJ, Burckart GJ. Understanding the genetic basis for adverse drug effects: the calcineurin inhibitors. Pharmacotherapy 2010; 30: 195 – 209. doi: 10.1592/phco.30.2.195.en_US
dc.identifier.citedreferenceSauret JM, Marinides G, Wang GK. Rhabdomyolysis. Am Fam Physician 2002; 65: 907 – 912.en_US
dc.identifier.citedreferenceKottlors M, Jaksch M, Ketelsen UP, Weiner S, Glocker FX, Lucking CH. Valproic acid triggers acute rhabdomyolysis in a patient with carnitine palmitoyltransferase type II deficiency. Neuromuscul Disord 2001; 11: 757 – 759.en_US
dc.identifier.citedreferenceVladutiu GD, Simmons Z, Isackson PJ, et al.. Genetic risk factors associated with lipid‐lowering drug‐induced myopathies. Muscle Nerve 2006; 34: 153 – 162. doi: 10.1002/mus.20567.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.