Show simple item record

Modular cell biology: retroactivity and insulation

dc.contributor.authorDel Vecchio, Domitillaen_US
dc.contributor.authorNinfa, Alexander Jen_US
dc.contributor.authorSontag, Eduardo Den_US
dc.date.accessioned2014-02-11T17:57:18Z
dc.date.available2014-02-11T17:57:18Z
dc.date.issued2008en_US
dc.identifier.citationDel Vecchio, Domitilla; Ninfa, Alexander J; Sontag, Eduardo D (2008). "Modular cell biology: retroactivity and insulation." Molecular Systems Biology 4(1): n/a-n/a. <http://hdl.handle.net/2027.42/102706>en_US
dc.identifier.issn1744-4292en_US
dc.identifier.issn1744-4292en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102706
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subject.otherSingular Perturbationen_US
dc.subject.otherFeedbacken_US
dc.subject.otherInsulationen_US
dc.subject.otherModularityen_US
dc.titleModular cell biology: retroactivity and insulationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102706/1/msb4100204.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102706/2/msb4100204-sup-0001.pdf
dc.identifier.doi10.1038/msb4100204en_US
dc.identifier.sourceMolecular Systems Biologyen_US
dc.identifier.citedreferenceSaez‐Rodriguez J, Kremling A, Gilles E ( 2005 ) Dissecting the puzzle of life: modularization of signal transduction networks. Comput Chem Eng 29: 619 – 629en_US
dc.identifier.citedreferenceKremling A, Saez‐Rodriguez J ( 2007 ) Systems biology—an engineering perspective. J Biotechnol 129: 329 – 351en_US
dc.identifier.citedreferenceLauffenburger DA ( 2000 ) Cell signaling pathways as control modules: complexity for simplicity? Proc Natl Acad Sci USA 97: 5031 – 5033en_US
dc.identifier.citedreferenceMason O, Verwoerd M ( 2006 ) Graph theory and networks in biology. Tech. Rep., http://arxiv.org/abs/q‐bio.MN/0604006en_US
dc.identifier.citedreferencePapin JA, Reed JL, Palsson BO ( 2004 ) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem Sci 29: 641 – 647en_US
dc.identifier.citedreferencePolderman JW, Willems JC ( 2007 ) Introduction to Mathematical Systems Theory. A Behavioral Approach, 2nd edn. New York: Springer‐Verlagen_US
dc.identifier.citedreferenceReitzer LJ, Magasanik B ( 1983 ) Isolation of nitrogen assimilation regulator NR I, the product of the glnG gene of Escherichia coli. Proc Natl Acad Sci USA 80: 5554 – 5558en_US
dc.identifier.citedreferenceRubertis GD, Davies SW ( 2003 ) A genetic circuit amplifier: design and simulation. IEEE Trans Nanobioscience 2: 239 – 246en_US
dc.identifier.citedreferenceSaez‐Rodriguez J, Kremling A, Conzelmann H, Bettenbrock K, Gilles ED ( 2004 ) Modular analysis of signal transduction networks. IEEE Contr Syst Mag 24: 35 – 52en_US
dc.identifier.citedreferenceSauro H ( 2004 ) The computational versatility of proteomic signaling networks. Curr Proteomics 1: 67 – 81en_US
dc.identifier.citedreferenceSauro HM, Ingalls B ( 2007 ) MAPK cascades as feedback amplifiers. Tech. Rep., http://arxiv.org/abs/0710.5195en_US
dc.identifier.citedreferenceSauro HM, Kholodenko BN ( 2004 ) Quantitative analysis of signaling networks. Prog Biophys Mol Biol 86: 5 – 43en_US
dc.identifier.citedreferenceSavageau MA ( 1976 ) Biochemical Systems Analysis. A Study of Function and Design in Molecular Biology. Reading, MA: Addison‐Wesleyen_US
dc.identifier.citedreferenceSchilling DL, Belove C ( 1968 ) Electronic Circuits: Discrete and Integrated. New York, McGraw Hillen_US
dc.identifier.citedreferenceShen‐Orr SS, Milo R, Mangan S, Alon U ( 2002 ) Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 31: 64 – 68en_US
dc.identifier.citedreferenceSnel B, Bork P, Huynen MA ( 2002 ) The identification of functional modules from the genomic association of genes. Proc Natl Acad Sci USA 99: 5890 – 5895en_US
dc.identifier.citedreferenceSontag E ( 1998 ) Mathematical Control Theory. New York: Springer‐Verlagen_US
dc.identifier.citedreferenceVoet D, Voet JG ( 2004 ) Biochemistry, 3rd edn. Hoboken, NJ: John Wiley and Sonsen_US
dc.identifier.citedreferenceWillems J ( 1999 ) Behaviors, latent variables, and interconnections. Systems, Control and Information 43: 453 – 464en_US
dc.identifier.citedreferenceYildirim N, Mackey MC ( 2003 ) Feedback regulation in the lactose operon: a mathematical modeling study and comparison with experimental data. Biophys J 84: 2841 – 2851en_US
dc.identifier.citedreferenceAcerenza L, Sauro H, Kacser H ( 1989 ) Control analysis of time‐dependent metabolic systems. J Theor Biol 151: 423 – 444en_US
dc.identifier.citedreferenceAlon U ( 2003 ) Biological networks: the tinkerer as an engineer. Science 301: 1866 – 1867en_US
dc.identifier.citedreferenceAlon U ( 2007 ) An Introduction to Systems Biology. Design Principles of Biological Circuits. Chapman‐Hall/CRC Taylor & Francis, Boca Raton, FLen_US
dc.identifier.citedreferenceAndrianantoandro E, Basu S, Karig DK, Weiss R ( 2006 ) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2: 1 – 14 16738572 10.1038/msb4100073en_US
dc.identifier.citedreferenceArkin A, Ross J, McAdams HH ( 1998 ) Stochastic kinetic analysis of developmental pathway bifurcation in phage λ‐infected Escherichia coli cells. Genetics 149: 1633 – 1648en_US
dc.identifier.citedreferenceAsthagiri AR, Lauffenburger DA ( 2000 ) Bioengineering models of cell signaling. Annu Rev Biomed Eng 2: 31 – 53en_US
dc.identifier.citedreferenceAtkinson MR, Savageau MA, Meyers JT, Ninfa AJ ( 2003 ) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113: 597 – 607en_US
dc.identifier.citedreferenceBruggeman FJ, Westerhoff HV, Hoek JB, Kholodenko BN ( 2002 ) Modular response analysis of cellular regulatory networks. J Theor Biol 218: 507 – 520en_US
dc.identifier.citedreferenceCiliberto A, Capuani F, Tyson JJ ( 2007 ) Modeling networks of coupled enzymatic reactions using the total quasi‐steady state approximation. PLoS Comput Biol 3: 463 – 472en_US
dc.identifier.citedreferenceDemin O, Westerhoff H, Kholodenko B ( 1999 ) Control analysis of stationary fixed oscillations. J Phys Chem B 103: 10695 – 10710en_US
dc.identifier.citedreferenceEndy D ( 2005 ) Foundations for engineering biology. Nature 438: 449 – 452en_US
dc.identifier.citedreferenceFell D ( 1992 ) Metabolic control analysis a survey of its theoretical and experimental development. Biochem J 286: 313 – 330en_US
dc.identifier.citedreferenceHartwell L, Hopfield J, Leibler S, Murray A ( 1999 ) From molecular to modular cell biology. Nature 402: 47 – 52en_US
dc.identifier.citedreferenceHeinrich R, Neel BG, Rapoport TA ( 2002 ) Mathematical models of protein kinase signal transduction. Mol Cell 9: 957 – 970en_US
dc.identifier.citedreferenceHeinrich R, Schuster S ( 1996 ) The Regulation of Cellular Systems. New York: Chapman & Hallen_US
dc.identifier.citedreferenceHofmeyr SJ ( 1997 ) Anaerobic energy metabolism in yeast as a supply–demand system. In New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge, Cornish‐Bowden A (ed), pp 225 – 242. Valencia, Spain: Universitat de Valenciaen_US
dc.identifier.citedreferenceHofmeyr SJ, Cornish‐Bowden A ( 2000 ) Regulating the cellular economy of supply and demand. FEBS Lett 476: 47 – 51en_US
dc.identifier.citedreferenceHuang CF, Ferrell JE ( 1996 ) Ultrasensitivity in the mitogen‐activated protein kinase cascade. Proc Natl Acad Sci USA 93: 10078 – 10083en_US
dc.identifier.citedreferenceIngalls B, Sauro H ( 2003 ) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non‐steady state trajectories. J Theor Biol 222: 23 – 36en_US
dc.identifier.citedreferenceJacob F ( 1977 ) Evolution and tinkering. Science 196: 1161 – 1166en_US
dc.identifier.citedreferenceKholodenko BN, Brown GC, Hoek JB ( 2000 ) Diffusion control of protein phosphorylation in signal transduction pathways. Biochem J 350: 901 – 907en_US
dc.identifier.citedreferenceKirschner MW, Gerhart JC ( 2005 ) The Plausibility of Life: Resolving Darwin's Dilemma. New Haven and London: Yale University Pressen_US
dc.identifier.citedreferenceKokotovic P, Khalil HK, O‧Reilly J ( 1999 ) Singular Perturbation Methods in Control. PHILADELPHIA: SIAM, Classics in Applied Mathematics, vol 25en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.