Show simple item record

Insights from low‐temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, California

dc.contributor.authorNiemi, Nathan A.en_US
dc.contributor.authorBuscher, Jamie T.en_US
dc.contributor.authorSpotila, James A.en_US
dc.contributor.authorHouse, Martha A.en_US
dc.contributor.authorKelley, Shari A.en_US
dc.date.accessioned2014-02-11T17:57:19Z
dc.date.available2015-02-03T16:14:39Zen_US
dc.date.issued2013-12en_US
dc.identifier.citationNiemi, Nathan A.; Buscher, Jamie T.; Spotila, James A.; House, Martha A.; Kelley, Shari A. (2013). "Insights from low‐temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, California." Tectonics 32(6): 1602-1622.en_US
dc.identifier.issn0278-7407en_US
dc.identifier.issn1944-9194en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102707
dc.description.abstractThe San Emigdio Mountains are an example of an archetypical, transpressional structural system, bounded to the south by the San Andreas strike‐slip fault, and to the north by the active Wheeler Ridge thrust. Apatite (U‐Th)/He and apatite and zircon fission track ages were obtained along transects across the range and from wells in and to the north of the range. Apatite (U‐Th)/He ages are 4–6 Ma adjacent to the San Andreas fault, and both (U‐Th)/He and fission track ages grow older with distance to the north from the San Andreas. The young ages north of the San Andreas fault contrast with early Miocene (U‐Th)/He ages from Mount Pinos on the south side of the fault. Restoration of sample paleodepths in the San Emigdio Mountains using a regional unconformity at the base of the Eocene Tejon Formation indicates that the San Emigdio Mountains represent a crustal fragment that has been exhumed more than 5 km along the San Andreas fault since late Miocene time. Marked differences in the timing and rate of exhumation between the northern and southern sides of the San Andreas fault are difficult to reconcile with existing structural models of the western Transverse Ranges as a thin‐skinned thrust system. Instead, these results suggest that rheologic heterogeneities may play a role in localizing deformation along the Big Bend of the San Andreas fault as the San Emigdio Mountains are compressed between the crystalline basement of Mount Pinos and oceanic crust that underlies the southern San Joaquin Valley. Key Points There is Pliocene exhumation of the western Transverse Ranges Localization of deformation may be controlled by lithospheric strength Strain is partitioned between the San Andreas and regional thrustsen_US
dc.publisherPacific Section SEPM (Society for Sedimentary Geology)en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherExhumationen_US
dc.subject.otherSan Andreas Faulten_US
dc.subject.otherTranspressionen_US
dc.subject.otherLow‐Temperature Thermochronometryen_US
dc.subject.otherSan Emigdio Mountainsen_US
dc.subject.otherMount Pinosen_US
dc.titleInsights from low‐temperature thermochronometry into transpressional deformation and crustal exhumation along the San Andreas fault in the western Transverse Ranges, Californiaen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102707/1/tect20096.pdf
dc.identifier.doi10.1002/2013TC003377en_US
dc.identifier.sourceTectonicsen_US
dc.identifier.citedreferenceReiners, P. W., R. Brady, K. A. Farley, J. E. Fryxell, B. Wernicke, and D. Lux ( 2000 ), Helium and argon thermochronometry of the Gold Butte Block, South Virgin Mountains, Nevada, Earth Planet. Sci. Lett., 178 ( 3–4 ), 315 – 326.en_US
dc.identifier.citedreferenceSpotila, J. A., M. A. House, N. A. Niemi, R. C. Brady, M. Oskin, and J. T. Buscher ( 2007b ), Patterns of bedrock uplift along the San Andreas fault and implications for mechanisms of transpression, in Exhumation Associated with Continental Strike‐Slip Fault Systems, edited by S. M. Roeske et al., pp. 15 – 33, Geological Society of America, Boulder, Colo.en_US
dc.identifier.citedreferenceStockli, D. F., K. A. Farley, and T. A. Dumitru ( 2000 ), Calibration of the apatite (U‐Th)/He thermochronometer on an exhumed fault block, White Mountains, California, Geology, 28, 983 – 986.en_US
dc.identifier.citedreferenceStüwe, K., L. White, and R. Brown ( 1994 ), The influence of eroding topography on steady‐state isotherms; Application to fission track analysis, Earth Planet. Sci. Lett., 124 ( 1–4 ), 63 – 74.en_US
dc.identifier.citedreferenceSuppe, J., and D. A. Medwedeff ( 1990 ), Geometry and kinematics of fault‐propagation folding, Eclogae Geol. Helv., 83 ( 3 ), 409 – 454.en_US
dc.identifier.citedreferenceSylvester, A. G. ( 1988 ), Strike‐slip faults, Geol. Soc. Am. Bull., 100 ( 11 ), 1666 – 1703.en_US
dc.identifier.citedreferenceTagami, T., A. Carter, and A. J. Hurford ( 1996 ), Natural long‐term annealing of the zircon fission‐track system in Vienna Basin deep borehole samples: Constraints upon the partial annealing zone and closure temperature, Chem. Geol., 130 ( 1–2 ), 147 – 157.en_US
dc.identifier.citedreferenceTennyson, M. E. ( 1989 ), Pre‐transform early Miocene extension in western California, Geology, 17 ( 9 ), 792 – 796.en_US
dc.identifier.citedreferenceTeyssier, C., B. Tikoff, and M. Markley ( 1995 ), Oblique plate motion and continental tectonics, Geology, 23 ( 5 ), 447 – 450.en_US
dc.identifier.citedreferenceTeyssier, C., B. Tikoff, and J. Weber ( 2002 ), Attachment between brittle and ductile crust at wrenching plate boundaries, in Continental Collision and the Tectono‐sedimentary Evolution of Forelands, edited by G. Bertotti, K. Schulmann, and S. Cloetingh, pp. 93 – 117, EGU.en_US
dc.identifier.citedreferenceThomson, S. N. ( 2002 ), Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: An appraisal based on fission‐track results from the transpressional intra‐arc Liquine‐Ofqui fault zone, Geol. Soc. Am. Bull., 114 ( 9 ), 1159 – 1173.en_US
dc.identifier.citedreferenceTikoff, B., and C. Teyssier ( 1994 ), Strain modeling of displacement‐field partitioning in transpressional orogens, J. Struct. Geol., 16 ( 11 ), 1575 – 1588.en_US
dc.identifier.citedreferenceTippett, J. M., and P. J. J. Kamp ( 1993 ), Fission track analysis of the late Cenozoic vertical kinematics of continental Pacific crust, South Island, New Zealand, J. Geophys. Res., 98 ( B9 ), 16,119 – 16,148.en_US
dc.identifier.citedreferenceVauchez, A., and A. Nicolas ( 1991 ), Mountain building: strike‐parallel motion and mantle anisotropy, Tectonophysics, 185 ( 3–4 ), 183 – 201.en_US
dc.identifier.citedreferenceVauchez, A., G. Barruol, and A. Tommasi ( 1997 ), Why do continents break‐up parallel to ancient orogenic belts?, Terra Nova, 9 ( 2 ), 62 – 66.en_US
dc.identifier.citedreferenceWagner, G. A. ( 1968 ), Fission track dating of apatites, Earth Planet. Sci. Lett., 4 ( 5 ), 411 – 415.en_US
dc.identifier.citedreferenceWakabayashi, J., J. V. Hengesh, and T. L. Sawyer ( 2004 ), Four‐dimensional transform fault processes: Progressive evolution of step‐overs and bends, Tectonophysics, 392 ( 1–4 ), 279 – 301.en_US
dc.identifier.citedreferenceWhite, L. A. ( 1992 ), Thermal and unroofing history of the western Transverse Ranges, California; results from apatite fission track thermochronology, PhD thesis, 574 pp, University of Texas at Austin, Austin, TX, United States, (USA).en_US
dc.identifier.citedreferenceWhite, L. A., S. A. Kelley, and J. D. Corrigan ( 1991 ), Thermal and structural history of the San Emigdio Mountains, southern San Joaquin Basin, California, based on fission‐track analysis, Am. Assoc. Petrol. Geol. Bull., 75 ( 3 ), 692.en_US
dc.identifier.citedreferenceWilcox, R. E., T. P. Harding, and D. R. Seely ( 1973 ), Basic wrench tectonics, Am. Assoc. Petrol. Geol. Bull., 57 ( 1 ), 74 – 96.en_US
dc.identifier.citedreferenceWoodcock, N. H., and M. Fischer ( 1986 ), Strike‐slip duplexes, J. Struct. Geol., 8 ( 7 ), 725 – 735.en_US
dc.identifier.citedreferenceWoodcock, N. H., and B. Rickards ( 2003 ), Transpressive duplex and flower structure; Dent fault system, NW England, J. Struct. Geol., 25 ( 12 ), 1981 – 1992.en_US
dc.identifier.citedreferenceWoodcock, N. H., and C. Schubert ( 1994 ), Continental strike‐slip tectonics, in Continental Deformation, edited by P. L. Hancock, pp. 251 – 263, Pergamon Press, Oxford.en_US
dc.identifier.citedreferenceYeats, R. S. ( 1981 ), Quaternary flake tectonics of the California Transverse Ranges, Geology, 9 ( 1 ), 16 – 20.en_US
dc.identifier.citedreferenceYule, D., and K. Sieh ( 2003 ), Complexities of the San Andreas fault near San Gorgonio Pass: Implications for large earthquakes, J. Geophys. Res., 108 ( B11 ), 2548, doi: 10.1029/2003JB002394.en_US
dc.identifier.citedreferenceZoback, M. D., et al. ( 1987 ), New evidence on the state of stress of the San Andreas fault system, Science, 238 ( 4830 ), 1105 – 1111.en_US
dc.identifier.citedreferenceAlmgren, A. A., M. V. Filewicz, and H. L. Heitman ( 1988 ), Lower Tertiary foraminiferal and calcareous nannofossil zonation of California; an overview and recommendation, in Paleogene Stratigraphy, West Coast of North America, Field Trip Guidebook ‐ Pacific Section, Society of Economic Paleontologists and Mineralogists, vol. 58, edited by M. V. Filewicz and R. L. Squires, pp. 83 – 106, Pacific Section SEPM (Society for Sedimentary Geology), Santa Barbara, Calif.en_US
dc.identifier.citedreferenceAnderson, R. S. ( 1990 ), Evolution of the northern Santa‐Cruz Mountains by advection of crust past a San Andreas fault bend, Science, 249 ( 4967 ), 397 – 401.en_US
dc.identifier.citedreferenceBallance, P. F., D. G. Howell, and K. Ort ( 1983 ), Late Cenozoic wrench tectonics along the Nacimiento, South Cuyama, and La Panza faults, California, indicated by depositional history of the Simmler Formation, in Tectonics and Sedimentation Along Faults of the San Andreas System, edited by D. W. Anderson and M. J. Rymer, pp. 1 – 9, Soc. Econ. Paleontol. and Mineral., Pac. Sect., United States (USA).en_US
dc.identifier.citedreferenceBawden, G. W., A. Donnellan, L. H. Kellogg, D. Dong, and J. B. Rundle ( 1997 ), Geodetic measurements of horizontal strain near the White Wolf Fault, Kern County, California, 1926–1993, J. Geophys. Res., 102 ( B3 ), 4957 – 4967.en_US
dc.identifier.citedreferenceBehr, W. M., and J. P. Platt ( 2012 ), Kinematic and thermal evolution during two‐stage exhumation of a Mediterranean subduction complex, Tectonics, 31, TC4025, doi: 10.1029/2012TC003121.en_US
dc.identifier.citedreferenceBenowitz, J. A., P. W. Layer, P. Armstrong, S. E. Perry, P. J. Haeussler, P. G. Fitzgerald, and S. VanLaningham ( 2011 ), Spatial variations in focused exhumation along a continental‐scale strike‐slip fault: The Denali fault of the eastern Alaska Range, Geosphere, 7 ( 2 ), 455 – 467.en_US
dc.identifier.citedreferenceBenowitz, J. A., P. J. Haeussler, P. W. Layer, P. B. O'Sullivan, W. K. Wallace, and R. J. Gillis ( 2012 ), Cenozoic tectono‐thermal history of the Tordrillo Mountains, Alaska; Paleocene‐Eocene ridge subduction, decreasing relief, and late Neogene faulting, Geochem. Geophys. Geosyst., 13, Q04009, doi: 10.1029/2011GC003951.en_US
dc.identifier.citedreferenceBenowitz, J. A., P. W. Layer, and S. Vanlaningham ( 2013 ), Persistent long‐term (c. 24 Ma) exhumation in the eastern Alaska Range constrained by stacked thermochronology, in Advances in 40 Ar/ 39 Ar Dating: From Archeology to Planetary Sciences, Spec. Publ. Geol. Soc. London, vol. 378, edited by F. Jourdan, D. F. Mark, and C. Verati, Geological Society of London, London, U. K., doi: 10.1144/SP378.12.en_US
dc.identifier.citedreferenceBlythe, A. E., and N. Longinotti ( 2013 ), Exhumation of the southern Sierra Nevada–eastern Tehachapi Mountains constrained by low‐temperature thermochronology: Implications for the initiation of the Garlock fault, Lithosphere, 5, 321 – 327.en_US
dc.identifier.citedreferenceBohannon, R. G. ( 1976 ), Mid‐Tertiary nonmarine rocks along the San Andreas fault in southern California, PhD thesis, 622 pp., University of California at Santa Barbara, Santa Barbara, CA.en_US
dc.identifier.citedreferenceBohannon, R. G., and D. G. Howell ( 1982 ), Kinematic evolution of the junction of the San Andreas, Garlock, and Big Pine faults, California, Geology, 10 ( 7 ), 358 – 363.en_US
dc.identifier.citedreferenceBourne, S. J., T. Arnadottir, J. Beavan, D. J. Darby, P. C. England, B. Parsons, R. I. Walcott, and P. R. Wood ( 1998 ), Crustal deformation of the Marlborough fault zone in the South Island of New Zealand: Geodetic constraints over the interval 1982–1994, J. Geophys. Res., 103 ( B12 ), 30,147 – 30,165.en_US
dc.identifier.citedreferenceBunds, M. P. ( 2001 ), Fault strength and transpressional tectonics along the Castle Mountain strike‐slip fault, southern Alaska, Geol. Soc. Am. Bull., 113 ( 7 ), 908 – 919.en_US
dc.identifier.citedreferenceBurbank, D. W., and D. P. Whistler ( 1987 ), Temporally constrained tectonic rotations derived from magnetostratigraphic data: Implications for the initiation of the Garlock Fault, California, Geology, 15 ( 12 ), 1172 – 1175.en_US
dc.identifier.citedreferenceBürgmann, R. ( 1991 ), Transpression along the southern San Andreas fault, Durmid Hill, California, Tectonics, 10 ( 6 ), 1152 – 1163.en_US
dc.identifier.citedreferenceBürgmann, R., P. Segall, R. Arrowsmith, and T. Dumitru ( 1994 ), Slip rates and earthquake hazard along the Foothills thrust belt in the southern Santa Cruz Mountains, California, Abstr. Programs Geol. Soc. Am., 26 ( 7 ), 191.en_US
dc.identifier.citedreferenceBuscher, J. T., and J. A. Spotila ( 2007 ), Near‐field response to transpression along the southern San Andreas fault, based on exhumation of the northern San Gabriel Mountains, southern California, Tectonics, 26, TC5004, doi: 10.1029/2006TC002017.en_US
dc.identifier.citedreferenceCarman, M. F., Jr. ( 1964 ), Geology of the Lockwood Valley area Kern and Ventura counties, California, Spec. Rep. Calif. Div. Mines Geol., 81, 1 – 62.en_US
dc.identifier.citedreferenceChapman, A. D., and J. B. Saleeby ( 2012 ), Geologic map of the San Emigdio Mountains, southern California, Geological Society of America Maps & Charts, 101, scale 1:40,000, 3 p. text.en_US
dc.identifier.citedreferenceChapman, A. D., S. Kidder, J. B. Saleeby, and M. N. Ducea ( 2010 ), Role of extrusion of the Rand and Sierra de Salinas schists in Late Cretaceous extension and rotation of the southern Sierra Nevada and vicinity, Tectonics, 29, TC5006, doi: 10.1029/2006TC002017.en_US
dc.identifier.citedreferenceChapman, A. D., P. I. Luffi, J. B. Saleeby, and S. Petersen ( 2011 ), Metamorphic evolution, partial melting and rapid exhumation above an ancient flat slab: Insights from the San Emigdio Schist, southern California, J. Metamorph. Geol., 29, 601 – 626.en_US
dc.identifier.citedreferenceChapman, A. D., J. B. Saleeby, D. J. Wood, A. Piasecki, S. Kidder, M. N. Ducea, and K. A. Farley ( 2012 ), Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California, Geosphere, 8 ( 2 ), 314 – 341.en_US
dc.identifier.citedreferenceClark, M. K., and R. Bilham ( 2008 ), Miocene rise of the Shillong Plateau and the beginning of the end for the eastern Himalaya, Earth Planet. Sci. Lett., 269 ( 3–4 ), 336 – 350.en_US
dc.identifier.citedreferenceClark, M. K., M. A. House, L. H. Royden, K. X. Whipple, B. C. Burchfiel, X. Zhang, and W. Tang ( 2005 ), Late Cenozoic uplift of southeastern Tibet, Geology, 33 ( 6 ), 525 – 528.en_US
dc.identifier.citedreferenceCole, R. B., and R. G. Stanley ( 1995 ), Middle Tertiary extension recorded by lacustrine fan‐delta deposits, Plush Ranch basin, western Transverse Ranges, California, J. Sediment Res. B, 65 ( 4 ), 455 – 468.en_US
dc.identifier.citedreferenceCorti, G., J. van Wijk, S. A. P. L. Cloetingh, and C. K. Morley ( 2007 ), Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African rift system, Tectonics, 26, TC6006, doi: 10.1029/2006TC002086.en_US
dc.identifier.citedreferenceCowgill, E., J. R. Arrowsmith, A. Yin, X. F. Wang, and Z. L. Chen ( 2004a ), The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 2: Active deformation and the importance of transpression and strain hardening within the Altyn Tagh system, Geol. Soc. Am. Bull., 116 ( 11–12 ), 1443 – 1464.en_US
dc.identifier.citedreferenceCowgill, E., A. Yin, J. R. Arrowsmith, W. X. Feng, and S. H. Zhang ( 2004b ), The Akato Tagh bend along the Altyn Tagh fault, northwest Tibet 1: Smoothing by vertical‐axis rotation and the effect of topographic stresses on bend‐flanking faults, Geol. Soc. Am. Bull., 116 ( 11–12 ), 1423 – 1442.en_US
dc.identifier.citedreferenceCritelli, S., and T. H. Nilsen ( 2000 ), Provenance and stratigraphy of the Eocene Tejon Formation, western Tehachapi Mountains, San Emigdio Mountains, and southern San Joaquin Basin, California, Sediment Geol., 136 ( 1–2 ), 7 – 27.en_US
dc.identifier.citedreferenceCrowell, J. C., and J. W. R. Walker ( 1962 ), Anorthosite and related rocks along the San Andreas fault, southern California, Univ. Calif. Publ. Geol. Sci., 40, 219 – 288.en_US
dc.identifier.citedreferenceCunningham, D. ( 2007 ), Structural and topographic characteristics of restraining bend mountain ranges of the Altai, Gobi Altai and easternmost Tien Shan, in Tectonics of Strike‐Slip Restraining and Releasing Bends, edited by W. D. Cunningham and P. Mann, pp. 219 – 237, Geological Society of London, London.en_US
dc.identifier.citedreferenceDair, L., and M. L. Cooke ( 2009 ), San Andreas fault geometry through the San Gorgonio Pass, California, Geology, 37 ( 2 ), 119 – 122.en_US
dc.identifier.citedreferenceDarin, M. H., and R. Dorsey ( 2013 ), Reconciling disparate estimates of total offset on the southern San Andreas fault, Geology, 41 ( 9 ), 975 – 978, doi: 10.1130/G34276.1.en_US
dc.identifier.citedreferenceDart, R. L., M. N. Machette, D. Burns, G. D. Faneros, J. D. Little, and J. R. Davis ( 2000 ), Digital database of faults from the fault activity map of California and adjacent areas, CD‐ROM 2000–006.en_US
dc.identifier.citedreferenceDavis, T. L. ( 1983 ), Late Cenozoic structure and tectonic history of the western “Big Bend” of the San Andreas fault and adjacent San Emigdio Mountains, PhD thesis, 580 pp., University of California at Santa Barbara, Santa Barbara, CA.en_US
dc.identifier.citedreferenceDeCelles, P. G. ( 1988 ), Middle Cenozoic depositional, tectonic, and sea level history of southern San Joaquin Basin, California, Am. Assoc. Petrol. Geol. Bull., 72 ( 11 ), 1297 – 1322.en_US
dc.identifier.citedreferenceDewey, J. F., R. E. Holdsworth, and R. A. Strachan ( 1998 ), Transpression and transtension zones, in Continental Transpressional and Transtensional Tectonics, vol. 135, edited by R. E. Holdsworth, R. A. Strachan, and J. F. Dewey, pp. 1 – 14, Geological Society, London, Special Publications.en_US
dc.identifier.citedreferenceDibblee, T. W., Jr. ( 1961 ), Geologic structure of the San Emigdio Mountains, Kern County, California, in Geology and Paleontology of the Southern Border of the San Joaquin Valley, Kern County, California, Field trip Guidebook, edited by T. W. Dibblee Jr., pp. 2 – 28, Pacific Section, Society of Economic Paleontologists and Mineralogists, California.en_US
dc.identifier.citedreferenceDibblee, T. W., Jr. ( 1973 ), Geologic maps of the Santiago Creek, Eagle Rest Peak, Pleito Hills, Grapevine, and Pastoria Creek quadrangles, Kern County, California, U. S. Geological Survey Open‐file Rep., 73–57, scale 1:1:24,000.en_US
dc.identifier.citedreferenceDillon, J. T., and P. L. Ehlig ( 1993 ), Displacement on the southern San Andreas fault, in The San Andreas Fault System: Displacement, Palinspastic Reconstruction, and Geologic Evolution, Geological Society of America Memoir 178, edited by R. E. Powell, R. J. Weldon II, and J. C. Matti, pp. 199 – 216, Geological Society of America, Boulder, Colo.en_US
dc.identifier.citedreferenceDokka, R. K., and C. J. Travis ( 1990 ), Role of the eastern California shear zone in accommodating Pacific‐North American plate motion, Geophys. Res. Lett., 17 ( 9 ), 1323 – 1326.en_US
dc.identifier.citedreferenceDunbar, J. A., and D. S. Sawyer ( 1989 ), How preexisting weaknesses control the style of continental breakup, J. Geophys. Res., 94 ( B6 ), 7278 – 7292.en_US
dc.identifier.citedreferenceEhlert, K. W. ( 2003 ), Tectonic significance of the middle Miocene Mint Canyon and Caliente formations, southern California, in Evolution of Ridge Basin, Southern California: An Interplay of Sedimentation and Tectonics, edited by J. C. Crowell, pp. 113 – 130, Geological Society of America, Boulder, Colo.en_US
dc.identifier.citedreferenceEhlig, P. L., K. W. Ehlert, and B. M. Crowe ( 1975 ), Offset of the upper Miocene Caliente and Mint Canyon formations along the San Gabriel and San Andreas faults, Spec. Rep. Calif. Div. Mines Geol., 118, 83 – 92.en_US
dc.identifier.citedreferenceFarley, K. A. ( 2000 ), Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite, J. Geophys. Res., 105 ( B2 ), 2903 – 2914.en_US
dc.identifier.citedreferenceFarley, K. A. ( 2002 ), (U‐Th)/He dating: Techniques, calibrations, and applications, Rev. Mineral. Geochem., 47, 819 – 843.en_US
dc.identifier.citedreferenceFarley, K. A., and D. F. Stockli ( 2002 ), (U‐Th)/He dating of phosphates: Apatite, monazite, and xenotime, Rev. Mineral. Geochem., 48, 559 – 577.en_US
dc.identifier.citedreferenceFarley, K. A., R. A. Wolf, and L. T. Silver ( 1996 ), The effects of long alpha‐stopping distances on (U‐Th)/He ages, Geochim. Cosmochim. Acta, 60 ( 21 ), 4223 – 4229.en_US
dc.identifier.citedreferenceFitzgerald, P. G., M. Sandiford, P. J. Barrett, and A. J. W. Gleadow ( 1986 ), Asymmetric extension associated with uplift and subsidence in the Transantarctic Mountains and Ross Embayment, Earth Planet. Sci. Lett., 81 ( 1 ), 67 – 78.en_US
dc.identifier.citedreferenceFitzgerald, P. G., E. Stump, and T. F. Redfield ( 1993 ), Late Cenozoic uplift of Denali and its relation to relative plate motion and fault morphology, Science, 259 ( 5094 ), 497 – 499.en_US
dc.identifier.citedreferenceFlowers, R. M., D. L. Shuster, B. P. Wernicke, and K. A. Farley ( 2007 ), Radiation damage control on apatite (U‐Th)/He dates from the Grand Canyon region, Colorado Plateau, Geology, 35 ( 5 ), 447 – 450.en_US
dc.identifier.citedreferenceFossen, H., and B. Tikoff ( 1998 ), Forward modeling of non‐steady‐state deformations and the “minimum strain path”: Reply, J. Struct. Geol., 20 ( 7 ), 979 – 981.en_US
dc.identifier.citedreferenceFoster, D. A., A. J. W. Gleadow, and G. Mortimer ( 1994 ), Rapid Pliocene exhumation in the Karakoram (Pakistan), revealed by fission‐track thermochronology of the K2 gneiss, Geology, 22 ( 1 ), 19 – 22.en_US
dc.identifier.citedreferenceFrizzell, V. A., Jr., and P. W. Weigand ( 1993 ), Whole‐rock K‐Ar ages and geochemical data from middle Cenozoic volcanic rocks, Southern California; A test of correlations across the San Andreas Fault, in The San Andreas Fault System: Displacement, Palinspastic Reconstruction, and Geologic Evolution, edited by R. E. Powell, R. J. Weldon II, and J. C. Matti, pp. 273 – 287, Geological Society of America, Boulder, Colorado.en_US
dc.identifier.citedreferenceFrizzell, V. A., Jr., J. M. Mattinson, and J. C. Matti ( 1986 ), Distinctive Triassic megaporphyritic monzogranite: Evidence for only 160 km offset along the San Andreas fault, southern California, J. Geophys. Res., 91 ( B14 ), 14.en_US
dc.identifier.citedreferenceGalbraith, R. F. ( 1981 ), On statistical models for fission track counts, J. Int. Assoc. Math. Geol., 13 ( 6 ), 471 – 478.en_US
dc.identifier.citedreferenceGalbraith, R. F. ( 1984 ), On statistical estimation in fission track dating, J. Int. Assoc. Math. Geol., 16 ( 7 ), 653 – 669.en_US
dc.identifier.citedreferenceGalbraith, R. F., and G. M. Laslett ( 1985 ), Some remarks on statistical estimation in fission‐track dating, Nucl. Tracks Radiat. Meas., 10 ( 3 ), 361 – 363.en_US
dc.identifier.citedreferenceGesch, D., O. Oimoen, S. Greenlee, C. Nelson, M. Steuck, and D. Tyler ( 2002 ), The National Elevation Dataset, Photogramm. Eng. Remote Sens., 68, 5 – 32.en_US
dc.identifier.citedreferenceGleadow, A. J. W., and I. R. Duddy ( 1991 ), A natural long‐term annealing experiment for apatite, Nucl. Tracks Radiat. Meas., 5, 169 – 174.en_US
dc.identifier.citedreferenceGoodman, E. D., and P. E. Malin ( 1992 ), Evolution of the southern San Joaquin Basin and mid‐Tertiary “transitional” tectonics, central California, Tectonics, 11 ( 3 ), 478 – 498.en_US
dc.identifier.citedreferenceGradstein, F. M., J. G. Ogg, and A. G. Smith (Eds) ( 2004 ), A Geological Time Scale 2004, pp. 589, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceGreen, P. F. ( 1985 ), Comparison of zeta calibration baselines for fission‐track dating of apatite, zircon and sphene, Chem. Geol., 58 ( 1–2 ), 1 – 22.en_US
dc.identifier.citedreferenceGriscom, A., and R. C. Jachens ( 1990 ), Crustal and lithospheric structure from gravity and magnetic studies, in The San Andreas Fault System, California, edited by R. E. Wallace, pp. 239 – 259, U. S. Geological Survey Professional Paper 1515, Washington, D. C.en_US
dc.identifier.citedreferenceGuest, B., N. Niemi, and B. Wernicke ( 2007 ), Stateline fault system: A new component of the Miocene‐Quaternary Eastern California shear zone, Geol. Soc. Am. Bull., 119 ( 11 ), 1337 – 1347.en_US
dc.identifier.citedreferenceGutenberg, B. ( 1955 ), The first motion in longitudinal and transverse waves of the main shock and the direction of slip, in Earthquakes in Kern County, California, During 1952, edited by G. B. Oakeshott, pp. 165 – 170, California Division of Mines and Geology, Sacramento, Calif.en_US
dc.identifier.citedreferenceHill, M. L., and T. W. Dibblee ( 1953 ), San Andreas, Garlock, and Big Pine faults, California—A study of the character, history, and tectonic significance of their displacements, Geol. Soc. Am. Bull., 64 ( 4 ), 443 – 458.en_US
dc.identifier.citedreferenceHolbrook, W. S., and W. D. Mooney ( 1987 ), The crustal structure of the axis of the Great Valley, California, from seismic refraction measurements, Tectonophysics, 140 ( 1 ), 49 – 63.en_US
dc.identifier.citedreferenceHouse, M. A., K. A. Farley, and D. Stockli ( 2000 ), Helium chronometry of apatite and titanite using Nd‐YAG laser heating, Earth Planet. Sci. Lett., 183 ( 3–4 ), 365 – 368.en_US
dc.identifier.citedreferenceHouse, M. A., B. P. Wernicke, and K. A. Farley ( 2001 ), Paleo‐geomorphology of the Sierra Nevada, California, from (U‐Th)/He ages in apatite, Am. J. Sci., 301 ( 2 ), 77 – 102.en_US
dc.identifier.citedreferenceHurford, A. J., and P. F. Green ( 1983 ), The zeta age calibration of fission‐track dating, Chem. Geol., 41 ( 4 ), 285 – 317.en_US
dc.identifier.citedreferenceHutton, K., J. Woessner, and E. Hauksson ( 2010 ), Earthquake monitoring in Southern California for seventy‐seven years (1932–2008), Bull. Seismol. Soc. Am., 100 ( 2 ), 423 – 446.en_US
dc.identifier.citedreferenceJacobson, C. E., M. Grove, A. Vucic, J. N. Pedrick, and K. A. Ebert ( 2007 ), Exhumation of the Orocopia Schist and associated rocks of southeastern California: Relative roles of erosion, synsubduction tectonic denudation, and middle Cenozoic extension, in Convergent Margin Terranes and Associated Region: A Tribute to W. G. Ernst, edited by M. Cloos et al., pp. 1 – 37, Geological Society of America.en_US
dc.identifier.citedreferenceJames, E. W. ( 1986 ), U/Pb age of the Antimony Peak Tonalite and its relation to Rand Schist in the San Emigdio Mountains, California, Abstr. Programs Geol. Soc. Am., 18 ( 2 ), 121.en_US
dc.identifier.citedreferenceJames, E. W., and J. M. Mattinson ( 1988 ), Metamorphic history of the Salinian Block: An isotopic reconnaissance, in Metamorphism and Crustal Evolution of the Western United States, edited by W. G. Ernst, pp. 938 – 952, Prentice‐Hall, Englewood Cliffs, N. J.en_US
dc.identifier.citedreferenceJennings, C. W. ( 1994 ), Fault activity map of California and adjacent areas with locations and ages of recent volcanic eruptions, Geologic Data Map, 6, scale 1:500000.en_US
dc.identifier.citedreferenceKeller, E. A., R. L. Zepeda, T. K. Rockwell, T. L. Ku, and W. S. Dinklage ( 1998 ), Active tectonics at Wheeler Ridge, southern San Joaquin Valley, California, Geol. Soc. Am. Bull., 110 ( 3 ), 298 – 310.en_US
dc.identifier.citedreferenceKeller, E. A., D. B. Seaver, D. L. Laduzinsky, D. L. Johnson, and T. L. Ku ( 2000 ), Tectonic geomorphology of active folding over buried reverse faults: San Emigdio Mountain front, southern San Joaquin Valley, California, Geol. Soc. Am. Bull., 112 ( 1 ), 86 – 97.en_US
dc.identifier.citedreferenceKellogg, K. S. ( 1999 ), Geologic map of the Lockwood Valley quadrangle, Ventura County, California, U. S. Geol. Surv. Open File Rep., OF 99–0130, scale 1:24000, 8 p. text.en_US
dc.identifier.citedreferenceKellogg, K. S. ( 2003 ), Geologic map of the Cuddy Valley quadrangle, Kern and Ventura Counties, California, U. S. Geol. Surv. Open File Rep., OF 03–0153, scale 1:24,000, 17 p. text.en_US
dc.identifier.citedreferenceKellogg, K. S., and D. P. Miggins ( 2002 ), Geologic map of the Sawmill Mountain quadrangle, Kern and Ventura Counties, California, U. S. Geol. Surv. Open File Rep., OF 02–406, scale 1:1:24,000.en_US
dc.identifier.citedreferenceKellogg, K. S., and S. A. Minor ( 2005 ), Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the “Big Bend” of the San Andreas fault: An example from Lockwood Valley, Southern California, Tectonics, 24, TC1004, doi: 10.1029/2003TC001610.en_US
dc.identifier.citedreferenceKellogg, K. S., S. A. Minor, and P. M. Cossette ( 2008 ), Geologic map of the eastern three‐quarters of the Cuyama 30′ × 60′ quadrangle, California, Scientific Investigations Map, 3002, scale 1:100,000.en_US
dc.identifier.citedreferenceKetcham, R. A. ( 2005 ), Forward and inverse modeling of low‐temperature thermochronometry data, Rev. Mineral. Geochem., 58, 275 – 314.en_US
dc.identifier.citedreferenceKleinpell, R. M. ( 1938 ), Miocene Stratigraphy of California, pp. 450, American Association of Petroleum Geologists, Tulsa, Okla.en_US
dc.identifier.citedreferenceLachenbruch, A. H., J. H. Sass, G. D. Clow, and R. Weldon ( 1995 ), Heat flow at Cajon Pass, California, revisited, J. Geophys. Res., 100 ( B2 ), 2005 – 2012.en_US
dc.identifier.citedreferenceLaslett, G. M., P. F. Green, I. R. Duddy, and A. J. W. Gleadow ( 1987 ), Thermal annealing of fission tracks in apatite, Chem. Geol., 65 ( 1 ), 1 – 13.en_US
dc.identifier.citedreferenceLaw, R. D., K. Eriksson, and C. Davisson ( 2001 ), Formation, evolution, and inversion of the middle Tertiary Diligencia basin, Orocopia Mountains, southern California, Geol. Soc. Am. Bull., 113 ( 2 ), 196 – 221.en_US
dc.identifier.citedreferenceLechler, A. R., and N. A. Niemi ( 2011 ), Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California, Geology, 39 ( 4 ), 379 – 382.en_US
dc.identifier.citedreferenceLindvall, S. C., T. K. Rockwell, T. E. Dawson, J. G. Helms, and K. W. Bowman ( 2002 ), Evidence for two surface ruptures in the past 500 years on the San Andreas fault at Frazier Mountain, California, Bull. Seismol. Soc. Am., 92 ( 7 ), 2689 – 2703.en_US
dc.identifier.citedreferenceMagistrale, H., and C. Sanders ( 1996 ), Evidence from precise earthquake hypocenters for segmentation of the San Andreas fault in San Gorgonio Pass, J. Geophys. Res., 101 ( B2 ), 3031 – 3044.en_US
dc.identifier.citedreferenceMahan, K. H., B. Guest, B. Wernicke, and N. A. Niemi ( 2009 ), Low‐temperature thermochronologic constraints on the kinematic history and spatial extent of the Eastern California shear zone, Geosphere, 5 ( 6 ), 483 – 495.en_US
dc.identifier.citedreferenceMaheo, G., J. Saleeby, Z. Saleeby, and K. A. Farley ( 2009 ), Tectonic control on southern Sierra Nevada topography, California, Tectonics, 28, TC6006, doi: 10.1029/2008TC002340.en_US
dc.identifier.citedreferenceMallory, V. S. ( 1959 ), Lower Tertiary Biostratigraphy of the California Coast Ranges, vol. 416, American Association of Petroleum Geologists, Tulsa, Okla.en_US
dc.identifier.citedreferenceMatti, J. C., and D. M. Morton ( 1993 ), Paleogeographic evolution of the San Andreas fault in Southern California: A reconstruction based on a new cross‐fault correlation, in The San Andreas Fault System: Displacement, Palinspastic Reconstruction, and Geologic Evolution, edited by R. E. Powell, R. J. Weldon II, and J. C. Matti, pp. 107 – 159, Geological Society of America Memoir 178, Boulder, Colo.en_US
dc.identifier.citedreferenceMcClay, K., and M. Bonora ( 2001 ), Analog models of restraining stepovers in strike‐slip fault systems, Am. Assoc. Petrol. Geol. Bull., 85 ( 2 ), 233 – 260.en_US
dc.identifier.citedreferenceMcDowell, F. W., W. C. McIntosh, and K. A. Farley ( 2005 ), A precise 40 Ar/ 39 Ar reference age for the Durango apatite (U‐Th)/He and fission‐track dating standard, Chem. Geol., 214 ( 3–4 ), 249 – 263.en_US
dc.identifier.citedreferenceMcGill, J. T. ( 1951 ), Quaternary geology of the north‐central San Emigdio Mountains, California, PhD thesis, 204 pp, University of California at Los Angeles, Los Angeles, Calif.en_US
dc.identifier.citedreferenceMcGill, S. F., S. G. Wells, S. K. Fortner, H. A. Kuzma, and J. D. McGill ( 2009 ), Slip rate of the western Garlock fault, at Clark Wash, near Lone Tree Canyon, Mojave Desert, California, Geol. Soc. Am. Bull., 121, 536 – 554.en_US
dc.identifier.citedreferenceMedwedeff, D. A. ( 1988 ), Structural analysis and tectonic significance of late‐Tertiary and Quaternary, compressive‐growth folding, San Joaquin Valley, California, PhD thesis, 184 pp, Princeton University, Princeton, N. J.en_US
dc.identifier.citedreferenceMolnar, P. ( 1988 ), Continental tectonics in the aftermath of plate‐tectonics, Nature, 335 ( 6186 ), 131 – 137.en_US
dc.identifier.citedreferenceMolnar, P., and K. E. Dayem ( 2010 ), Major intracontinental strike‐slip faults and contrasts in lithospheric strength, Geosphere, 6 ( 4 ), 444 – 467.en_US
dc.identifier.citedreferenceMonastero, F. C., A. E. Sabin, and J. D. Walker ( 1997 ), Evidence for post‐early Miocene initiation of movement on the Garlock fault from offset of the Cudahy Camp Formation, east‐central California, Geology, 25 ( 3 ), 247 – 250.en_US
dc.identifier.citedreferenceMount, V. S., and J. Suppe ( 1987 ), State of stress near the San Andreas fault: Implications for wrench tectonics, Geology, 15 ( 12 ), 1143 – 1146.en_US
dc.identifier.citedreferenceMueller, K., and J. Suppe ( 1997 ), Growth of Wheeler Ridge anticline, California: Geomorphic evidence for fault‐bend folding behaviour during earthquakes, J. Struct. Geol., 19 ( 3–4 ), 383 – 396.en_US
dc.identifier.citedreferenceMueller, K., and P. Talling ( 1997 ), Geomorphic evidence for tear faults accommodating lateral propagation of an active fault‐bend fold, Wheeler Ridge, California, J. Struct. Geol., 19 ( 3–4 ), 397 – 411.en_US
dc.identifier.citedreferenceNaeser, C. W. ( 1979 ), Fission‐track dating and geologic annealing of fission tracks, in Lectures in Isotope Geology, edited by E. Jäger and J. C. Hunziker, pp. 154 – 169, Springer‐Verlag, New York.en_US
dc.identifier.citedreferenceNaeser, C. W., and H. Faul ( 1969 ), Fission track annealing in apatite and sphene, J. Geophys. Res., 74 ( 2 ), 705 – 710.en_US
dc.identifier.citedreferenceNamson, J. S., and T. L. Davis ( 1988a ), Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation, Geology, 16 ( 8 ), 675 – 679.en_US
dc.identifier.citedreferenceNamson, J. S., and T. L. Davis ( 1988b ), Seismically active fold and thrust belt in the San Joaquin Valley, central California, Geol. Soc. Am. Bull., 100 ( 2 ), 257 – 273.en_US
dc.identifier.citedreferenceNiemi, N. A., B. P. Wernicke, R. J. Brady, J. B. Saleeby, and G. C. Dunne ( 2001 ), Distribution and provenance of the middle Miocene Eagle Mountain Formation, and implications for regional kinematic analysis of the Basin and Range province, Geol. Soc. Am. Bull., 113 ( 4 ), 419 – 442.en_US
dc.identifier.citedreferenceNilsen, T. H., T. W. Dibblee Jr., and W. O. Addicott ( 1973 ), Lower and middle Tertiary stratigraphic units of the San Emigdio and western Tehachapi Mountains California, U. S. Geol. Surv. Bull., 1372‐H, H1 – H23.en_US
dc.identifier.citedreferenceNourse, J. A. ( 2002 ), Middle Miocene reconstruction of the central and eastern San Gabriel Mountains, Southern California, with implications for evolution of the San Gabriel Fault and Los Angeles Basin, in Contributions to Crustal Evolution of the Southwestern United States, edited by A. P. Barth, pp. 161 – 185, Geological Society of America, Boulder, Colo.en_US
dc.identifier.citedreferenceOdonne, F., and P. Vialon ( 1983 ), Analog models of folds above a wrench fault, Tectonophysics, 99 ( 1 ), 31 – 46.en_US
dc.identifier.citedreferenceOskin, M., and J. Stock ( 2003 ), Marine incursion synchronous with plate‐boundary localization in the Gulf of California, Geology, 31 ( 1 ), 23 – 26.en_US
dc.identifier.citedreferenceOskin, M., J. Stock, and A. Martin‐Barajas ( 2001 ), Rapid localization of Pacific‐North America plate motion in the Gulf of California, Geology, 29 ( 5 ), 459 – 462.en_US
dc.identifier.citedreferencePickett, D. A., and J. B. Saleeby ( 1994 ), Nd, Sr, and Pb isotopic characteristics of Cretaceous intrusive rocks from deep levels of the Sierra Nevada batholith, Tehachapi Mountains, California, Contrib. Mineral. Petrol., 118 ( 2 ), 198 – 215.en_US
dc.identifier.citedreferencePowell, R. E. ( 1981 ), Geology of the crystalline basement complex, eastern Transverse Ranges, southern California: Constraints on regional tectonic interpretation, PhD thesis, 441 pp, California Institute of Technology, Pasadena, Calif.en_US
dc.identifier.citedreferencePowell, R. E. ( 1993 ), Balanced palinspastic reconstruction of pre‐late Cenozoic paleogeology, Southern California: Geologic and kinematic constraints on evolution of the San Andreas fault system, in The San Andreas Fault System: Displacement, Palinspastic Reconstruction, and Geologic Evolution, edited by R. E. Powell, R. J. Weldon II, and J. C. Matti, pp. 1 – 106, Geological Society of America, Boulder, Colo.en_US
dc.identifier.citedreferencePowell, R. E., and R. J. I. Weldon ( 1992 ), Evolution of the San Andreas fault, Annu. Rev. Earth Planet. Sci., 20, 431 – 468.en_US
dc.identifier.citedreferencePrice, P. B., and R. M. Walker ( 1963 ), Fossil tracks of charged particles in mica and the age of minerals, J. Geophys. Res., 68 ( 16 ), 4847 – 4862.en_US
dc.identifier.citedreferenceProthero, D. R. ( 2001 ), Chronostratigraphic calibration of the Pacific Coast Cenozoic: A summary, in Book ‐ Pacific Section, Society of Economic Paleontologists and Mineralogists, vol. 91, pp. 377 – 394, Tulsa, Okla.en_US
dc.identifier.citedreferenceRhoades, M. L., and P. G. DeCelles ( 1995 ), The provenance of middle Tertiary sandstones of the San Emigdio Range and Tehachapi Range, southern California, Am. Assoc. Petrol. Geol. Bull., 79 ( 4 ), 596.en_US
dc.identifier.citedreferenceRichter, C. F. ( 1955 ), Foreshocks and aftershocks, in Earthquakes in Kern County California During 1952, edited by G. Oakeshott, pp. 177 – 198, California Division of Mines and Geology, San Francisco.en_US
dc.identifier.citedreferenceRing, U. ( 1994 ), The influence of preexisting structure on the evolution of the Cenozoic Malawi Rift (East African rift system), Tectonics, 13 ( 2 ), 313 – 326.en_US
dc.identifier.citedreferenceRoss, D. C. ( 1972 ), Petrographic and chemical reconnaissance study of some granitic and gneissic rocks near the San Andreas fault from Bodega Head to Cajon Pass, California, U. S. Geol. Surv. Prof. Pap., 698, 92.en_US
dc.identifier.citedreferenceRoss, D. C. ( 1989 ), The metamorphic and plutonic rocks of the southernmost Sierra Nevada, California, and their tectonic framework, U. S. Geol. Surv. Prof. Pap., 1381, 159 p.en_US
dc.identifier.citedreferenceRust, D. ( 1998 ), Contractional and extensional structures in the transpressive “Big Bend” of the San Andreas fault, southern California, in Continental Transpressional and Transtensional Tectonics, edited by R. E. Holdsworth, R. A. Strachan, and J. F. Dewey, pp. 119 – 126, Geological Society of London, London, U. K.en_US
dc.identifier.citedreferenceSaleeby, J. B., D. B. Sams, and R. W. Kistler ( 1987 ), U/Pb zircon, strontium, and oxygen isotopic and geochronological study of the southernmost Sierra Nevada batholith, California, J. Geophys. Res., 92 ( B10 ), 10,443 – 10,466.en_US
dc.identifier.citedreferenceSaleeby, J., K. A. Farley, R. W. Kistler, and R. J. Fleck ( 2007 ), Thermal evolution and exhumation of deep‐level batholithic exposures, southernmost Sierra Nevada, California, in Convergent Margin Terranes and Associated Region: A Tribute to W. G. Ernst, edited by M. Cloos et al., pp. 39 – 66, Geological Society of America.en_US
dc.identifier.citedreferenceSalyards, S. L. ( 1989 ), Dating and characterizing late Holocene earthquakes using paleomagnetics, PhD thesis, 434 pp, California Institute of Technology, Pasadena, CA, United States, (USA).en_US
dc.identifier.citedreferenceSanderson, D. J., and W. R. D. Marchini ( 1984 ), Transpression, J. Struct. Geol., 6 ( 5 ), 449 – 458.en_US
dc.identifier.citedreferenceSherkati, S., J. Letouzey, and D. Frizon de Lamotte ( 2006 ), Central Zagros fold‐thrust belt (Iran): New insights from seismic data, field observation, and sandbox modeling, Tectonics, 25, TC4007, doi: 10.1029/2004TC001766.en_US
dc.identifier.citedreferenceShuster, D. L., R. M. Flowers, and K. A. Farley ( 2006 ), The influence of natural radiation damage on helium diffusion kinetics in apatite, Earth Planet. Sci. Lett., 249 ( 3–4 ), 148 – 161.en_US
dc.identifier.citedreferenceSieh, K. E. ( 1978 ), Slip along the San Andreas fault associated with the great 1857 earthquake, Bull. Seismol. Soc. Am., 68 ( 5 ), 1421 – 1447.en_US
dc.identifier.citedreferenceSieh, K. E., and R. H. Jahns ( 1984 ), Holocene activity of the San Andreas fault at Wallace Creek, California, Geol. Soc. Am. Bull., 95 ( 8 ), 883 – 896.en_US
dc.identifier.citedreferenceSnow, J. K., and B. Wernicke ( 2000 ), Cenozoic tectonism in the central Basin and Range: Magnitude, rate, and distribution of upper crustal strain, Am. J. Sci., 300 ( 9 ), 659 – 719.en_US
dc.identifier.citedreferenceSpotila, J. A., and K. Sieh ( 2000 ), Architecture of transpressional thrust faulting in the San Bernardino Mountains, southern California, from deformation of a deeply weathered surface, Tectonics, 19 ( 4 ), 589 – 615.en_US
dc.identifier.citedreferenceSpotila, J. A., K. A. Farley, and K. Sieh ( 1998 ), Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault California, as constrained by radiogenic helium thermochronometry, Tectonics, 17 ( 3 ), 360 – 378.en_US
dc.identifier.citedreferenceSpotila, J. A., K. A. Farley, J. D. Yule, and P. W. Reiners ( 2001 ), Near‐field transpressive deformation along the San Andreas fault zone in southern California, based on exhumation constrained by (U‐Th)/He dating, J. Geophys. Res., 106 ( B12 ), 30,909 – 930,922.en_US
dc.identifier.citedreferenceSpotila, J. A., N. Niemi, R. Brady, M. House, J. Buscher, and M. Oskin ( 2007a ), Long‐term continental deformation associated with transpressive plate motion: The San Andreas fault, Geology, 35 ( 11 ), 967 – 970.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.