Show simple item record

Novel anti‐tumor mechanism of galanin receptor type 2 in head and neck squamous cell carcinoma cells

dc.contributor.authorUehara, Takayukien_US
dc.contributor.authorKanazawa, Takeharuen_US
dc.contributor.authorMizukami, Hiroakien_US
dc.contributor.authorUchibori, Ryosukeen_US
dc.contributor.authorTsukahara, Tomonorien_US
dc.contributor.authorUrabe, Masashien_US
dc.contributor.authorKume, Akihiroen_US
dc.contributor.authorMisawa, Kiyoshien_US
dc.contributor.authorCarey, Thomas E.en_US
dc.contributor.authorSuzuki, Mikioen_US
dc.contributor.authorIchimura, Keiichien_US
dc.contributor.authorOzawa, Keiyaen_US
dc.date.accessioned2014-02-11T17:57:19Z
dc.date.available2015-03-02T14:35:33Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationUehara, Takayuki; Kanazawa, Takeharu; Mizukami, Hiroaki; Uchibori, Ryosuke; Tsukahara, Tomonori; Urabe, Masashi; Kume, Akihiro; Misawa, Kiyoshi; Carey, Thomas E.; Suzuki, Mikio; Ichimura, Keiichi; Ozawa, Keiya (2014). "Novel anti‐tumor mechanism of galanin receptor type 2 in head and neck squamous cell carcinoma cells." Cancer Science 105(1): 72-80.en_US
dc.identifier.issn1347-9032en_US
dc.identifier.issn1349-7006en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102710
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAdeno‐Associated Virus Vectoren_US
dc.subject.otherBimen_US
dc.subject.otherExtracellular Signal‐Regulated Kinases 1/2en_US
dc.subject.otherGalanin Receptoren_US
dc.subject.otherHead and Neck Squamous Cell Carcinomaen_US
dc.titleNovel anti‐tumor mechanism of galanin receptor type 2 in head and neck squamous cell carcinoma cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102710/1/cas12315.pdf
dc.identifier.doi10.1111/cas.12315en_US
dc.identifier.sourceCancer Scienceen_US
dc.identifier.citedreferenceKanazawa T, Mizukami H, Okada T et al. Suicide gene therapy using AAV‐HSVtk/ganciclovir in combination with irradiation results in regression of human head and neck cancer xenografts in nude mice. Gene Ther 2003; 10: 51 – 8.en_US
dc.identifier.citedreferenceLang R, Gundlach AL, Kofler B. The galanin peptide family: receptor pharmacology, pleiotropic biological actions, and implications in health and disease. Pharmacol Ther 2007; 115: 177 – 207.en_US
dc.identifier.citedreferenceMitsukawa K, Lu X, Bartfai T. Galanin, galanin receptors and drug targets. Cell Mol Life Sci 2008; 65: 1796 – 805.en_US
dc.identifier.citedreferenceBerger A, Santic R, Hauser‐Kronberger C et al. Galanin and galanin receptors in human cancers. Neuropeptides 2005; 39: 353 – 9.en_US
dc.identifier.citedreferenceIishi H, Tatsuta M, Baba M et al. Inhibition by galanin of experimental carcinogenesis induced by azaserine in rat pancreas. Int J Cancer 1998; 75: 396 – 9.en_US
dc.identifier.citedreferenceEl‐Salhy M, Starefeldt A. Direct effects of octreotide, galanin and serotonin on human colon cancer cells. Oncol Rep 2003; 10: 1723 – 8.en_US
dc.identifier.citedreferenceTjomsland V, El‐Salhy M. Effects of single, double or triple combinations of octreotide, galanin and serotonin on a human pancreatic cancer cell line. Histol Histopathol 2005; 20: 537 – 41.en_US
dc.identifier.citedreferenceKanazawa T, Misawa K, Carey TE. Galanin receptor subtypes 1 and 2 as therapeutic targets in head and neck squamous cell carcinoma. Expert Opin Ther Targets 2010; 14: 289 – 302.en_US
dc.identifier.citedreferenceHenson BS, Neubig RR, Jang I et al. Galanin receptor 1 has anti‐proliferative effects in oral squamous cell carcinoma. J Biol Chem 2005; 280 ( 22 ): 564 – 71.en_US
dc.identifier.citedreferenceBerger A, Lang R, Moritz K et al. Galanin receptor subtype GalR2 mediates apoptosis in SH‐SY5Y neuroblastoma cells. Endocrinology 2004; 145: 500 – 7.en_US
dc.identifier.citedreferenceTofighi R, Joseph B, Xia S et al. Galanin decreases proliferation of PC12 cells and induces apoptosis via its subtype 2 receptor (GalR2). Proc Natl Acad Sci USA 2008; 105: 2717 – 22.en_US
dc.identifier.citedreferenceOzawa K. Gene therapy using AAV. Uirusu 2007; 57: 47 – 55.en_US
dc.identifier.citedreferenceMizukami H, Ozawa K. Utility of AAV vectors derived from novel serotypes. Yakugaku Zasshi 2006; 126: 1021 – 8.en_US
dc.identifier.citedreferenceMingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 2011; 12: 341 – 55.en_US
dc.identifier.citedreferenceMuramatsu S, Fujimoto K, Kato S et al. A phase I study of aromatic L‐amino acid decarboxylase gene therapy for Parkinson's disease. Mol Ther 2010; 18: 1731 – 5.en_US
dc.identifier.citedreferenceManno CS, Pierce GF, Arruda VR et al. Successful transduction of liver in hemophilia by AAV‐Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342 – 7.en_US
dc.identifier.citedreferenceMaguire AM, High KA, Auricchio A et al. Age‐dependent effects of RPE65 gene therapy for Leber's congenital amaurosis: a phase 1 dose‐escalation trial. Lancet 2009; 374: 1597 – 605.en_US
dc.identifier.citedreferenceLi XP, Li CY, Li X et al. Inhibition of human nasopharyngeal carcinoma growth and metastasis in mice by adenovirus‐associated virus‐mediated expression of human endostatin. Mol Cancer Ther 2006; 5: 1290 – 8.en_US
dc.identifier.citedreferenceJiang M, Liu Z, Xiang Y et al. Synergistic antitumor effect of AAV‐mediated TRAIL expression combined with cisplatin on head and neck squamous cell carcinoma. BMC Cancer 2011; 11: 54.en_US
dc.identifier.citedreferenceKanter‐Schlifke I, Toft Sorensen A, Ledri M, Kuteeva E, Hokfelt T, Kokaia M. Galanin gene transfer curtails generalized seizures in kindled rats without altering hippocampal synaptic plasticity. Neuroscience 2007; 150: 984 – 92.en_US
dc.identifier.citedreferenceYamada T, Horiuchi M, Dzau VJ. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 1996; 93: 156 – 60.en_US
dc.identifier.citedreferenceHuang XC, Richards EM, Sumners C. Mitogen‐activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem 1996; 271 ( 15 ): 635 – 41.en_US
dc.identifier.citedreferenceMassa A, Barbieri F, Aiello C et al. The expression of the phosphotyrosine phosphatase DEP‐1/PTPeta dictates the responsivity of glioma cells to somatostatin inhibition of cell proliferation. J Biol Chem 2004; 279 ( 29 ): 004 – 12.en_US
dc.identifier.citedreferenceBarbieri F, Pattarozzi A, Gatti M et al. Somatostatin receptors 1, 2, and 5 cooperate in the somatostatin inhibition of C6 glioma cell proliferation in vitro via a phosphotyrosine phosphatase‐eta‐dependent inhibition of extracellularly regulated kinase‐1/2. Endocrinology 2008; 149: 4736 – 46.en_US
dc.identifier.citedreferenceFushimi K, Nakashima S, You F, Takigawa M, Shimizu K. Prostaglandin E2 downregulates TNF‐alpha‐induced production of matrix metalloproteinase‐1 in HCS‐2/8 chondrocytes by inhibiting Raf‐1/MEK/ERK cascade through EP4 prostanoid receptor activation. J Cell Biochem 2007; 100: 783 – 93.en_US
dc.identifier.citedreferenceEisenmann KM, VanBrocklin MW, Staffend NA, Kitchen SM, Koo HM. Mitogen‐activated protein kinase pathway‐dependent tumor‐specific survival signaling in melanoma cells through inactivation of the proapoptotic protein bad. Cancer Res 2003; 63: 8330 – 7.en_US
dc.identifier.citedreferencePanka DJ, Wang W, Atkins MB, Mier JW. The Raf inhibitor BAY 43‐9006 (Sorafenib) induces caspase‐independent apoptosis in melanoma cells. Cancer Res 2006; 66: 1611 – 9.en_US
dc.identifier.citedreferenceWang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P. Apoptosis induction in human melanoma cells by inhibition of MEK is caspase‐independent and mediated by the Bcl‐2 family members PUMA, Bim, and Mcl‐1. Clin Cancer Res 2007; 13: 4934 – 42.en_US
dc.identifier.citedreferenceWittau N, Grosse R, Kalkbrenner F, Gohla A, Schultz G, Gudermann T. The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to G(q), G(i) and G(12) proteins. Oncogene 2000; 19: 4199 – 209.en_US
dc.identifier.citedreferenceKamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006; 24: 2137 – 50.en_US
dc.identifier.citedreferenceShibuya K, Mathers CD, Boschi‐Pinto C, Lopez AD, Murray CJ. Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer 2002; 2: 37.en_US
dc.identifier.citedreferenceChoong N, Vokes E. Expanding role of the medical oncologist in the management of head and neck cancer. CA Cancer J Clin 2008; 58: 32 – 53.en_US
dc.identifier.citedreferenceGold KA, Lee HY, Kim ES. Targeted therapies in squamous cell carcinoma of the head and neck. Cancer 2009; 115: 922 – 35.en_US
dc.identifier.citedreferenceTejani MA, Cohen RB, Mehra R. The contribution of cetuximab in the treatment of recurrent and/or metastatic head and neck cancer. Biologics 2010; 4: 173 – 85.en_US
dc.identifier.citedreferenceGoerner M, Seiwert TY, Sudhoff H. Molecular targeted therapies in head and neck cancer–an update of recent developments. Head Neck Oncol 2010; 2: 8.en_US
dc.identifier.citedreferenceWang F, Arun P, Friedman J, Chen Z, Van Waes C. Current and potential inflammation targeted therapies in head and neck cancer. Curr Opin Pharmacol 2009; 9: 389 – 95.en_US
dc.identifier.citedreferenceKanazawa T, Nishino H, Hasegawa M et al. Interleukin‐6 directly influences proliferation and invasion potential of head and neck cancer cells. Eur Arch Otorhinolaryngol 2007; 264: 815 – 21.en_US
dc.identifier.citedreferenceHill SJ. G‐protein‐coupled receptors: past, present and future. Br J Pharmacol 2006; 147 ( Suppl. 1 ): S27 – 37.en_US
dc.identifier.citedreferenceKanazawa T, Iwashita T, Kommareddi P et al. Galanin and galanin receptor type 1 suppress proliferation in squamous carcinoma cells: activation of the extracellular signal regulated kinase pathway and induction of cyclin‐dependent kinase inhibitors. Oncogene 2007; 26: 5762 – 71.en_US
dc.identifier.citedreferenceKanazawa T, Kommareddi PK, Iwashita T et al. Galanin receptor subtype 2 suppresses cell proliferation and induces apoptosis in p53 mutant head and neck cancer cells. Clin Cancer Res 2009; 15: 2222 – 30.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.