Show simple item record

Invertibility of symmetric random matrices

dc.contributor.authorVershynin, Romanen_US
dc.date.accessioned2014-02-11T17:57:20Z
dc.date.available2015-04-16T14:24:20Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationVershynin, Roman (2014). "Invertibility of symmetric random matrices ." Random Structures & Algorithms 44(2): 135-182.en_US
dc.identifier.issn1042-9832en_US
dc.identifier.issn1098-2418en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/102712
dc.description.abstractWe study n × n symmetric random matrices H , possibly discrete, with iid above‐diagonal entries. We show that H is singular with probability at most exp ( − n c ) , and | | H − 1 | | = O ( n ) . Furthermore, the spectrum of H is delocalized on the optimal scale o ( n − 1 / 2 ) . These results improve upon a polynomial singularity bound due to Costello, Tao and Vu, and they generalize, up to constant factors, results of Tao and Vu, and Erdös, Schlein and Yau.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 135‐182, 2014en_US
dc.publisherWiley‐Interscienceen_US
dc.subject.otherInvertibility Problemen_US
dc.subject.otherSymmetric Random Matricesen_US
dc.subject.otherSingularity Probabilityen_US
dc.titleInvertibility of symmetric random matricesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/102712/1/rsa20429.pdf
dc.identifier.doi10.1002/rsa.20429en_US
dc.identifier.sourceRandom Structures & Algorithmsen_US
dc.identifier.citedreferenceT. Tao and, V. Vu, From the Littlewood‐Offord problem to the Circular Law: Universality of the spectral distribution of random matrices, Bull Am Math Soc 46 2009, 377 – 396.en_US
dc.identifier.citedreferenceJ. Kahn, J. Komlós, and E. Szemerédi, On the probability that a random ± 1 ‐matrix is singular, J Am Math Soc, 8, ( 1995 ), 223 – 240.en_US
dc.identifier.citedreferenceR. Latala, Some estimates of norms of random matrices, Proc Am Math Soc 133 ( 2005 ), 1273 – 1282.en_US
dc.identifier.citedreferenceH. Nguyen, Inverse Littlewood‐Offord problems and the singularity of random symmetric matrices, Duke Math J (in press).en_US
dc.identifier.citedreferenceH. Nguyen, On the least singular value of random symmetric matrices, Submitted for Publication.en_US
dc.identifier.citedreferenceM. Rudelson, Invertibility of random matrices: Norm of the inverse, Ann Math 168 ( 2008 ), 575 – 600.en_US
dc.identifier.citedreferenceM. Rudelson and, R. Vershynin, The Littlewood‐Offord Problem and invertibility of random matrices, Adv Math 218 ( 2008 ), 600 – 633.en_US
dc.identifier.citedreferenceM. Rudelson and, R. Vershynin, Smallest singular value of a random rectangular matrix, Commun Pure Appl Math 62 ( 2009 ), 1707 – 1739.en_US
dc.identifier.citedreferenceM. Rudelson and, R. Vershynin, Non‐asymptotic theory of random matrices: Extreme singular values, In Proceedings of the International Congress of Mathematicians, Hyderabad, India, 2010.en_US
dc.identifier.citedreferenceA. Sidorenko, A correlation inequality for bipartite graphs, Graphs Combin 9 1993, 201 – 204.en_US
dc.identifier.citedreferenceT. Tao and, V. Vu, Additive combinatorics, In Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006.en_US
dc.identifier.citedreferenceT. Tao and, V. Vu, Inverse Littlewood‐Offord theorems and the condition number of random discrete matrices, Ann Math 169 2009, 595 – 632.en_US
dc.identifier.citedreferenceT. Tao and, V. Vu, Random matrices: The distribution of the smallest singular values, Geom Funct Anal 20 2010, 260 – 297.en_US
dc.identifier.citedreferenceT. Tao and, V. Vu, Random matrices: Universality of local eigenvalue statistics up to the edge, Comm Math Phys, 298 ( 2010 ), 549 – 572.en_US
dc.identifier.citedreferenceT. Tao and, V. Vu, Random matrices: Universality of local eigenvalue statistics, Acta Math 206 ( 2011 ), 127 – 204.en_US
dc.identifier.citedreferenceT. Tao and V. Vu, Random matrices: Localization of the eigenvalues and the necessity of four moments, Acta Math Vietnam 36 ( 2011 ), 431 – 449.en_US
dc.identifier.citedreferenceR. Vershynin, Introduction to the non‐asymptotic analysis of random matrices, In Y. Eldar and G. Kutyniok (Editors), Compressed sensing: Theory and Applications, Cambridge University Press, in press.en_US
dc.identifier.citedreferenceN. Alon and J. Spencer, The probabilistic method, 2nd edition, Wiley‐Interscience, New York, 2000.en_US
dc.identifier.citedreferenceJ. Bourgain, V. Vu, and P. Wood, On the singularity probability of discrete random matrices, J Funct Anal, 258, 2010, 559 – 603.en_US
dc.identifier.citedreferenceK. Costello, Bilinear and quadratic variants on the Littlewood‐Offord problem, 2009, Submitted for Publication ( 2009 ).en_US
dc.identifier.citedreferenceK. Costello, T. Tao and, V. Vu, Random symmetric matrices are almost surely non‐singular, Duke Math J, 135, 2006, 395 – 413.en_US
dc.identifier.citedreferenceL. Erdös, B. Schlein, and H.‐T. Yau, Wegner estimate and level repulsion for Wigner random matrices, Int Math Res Not, 3, 2010, 436 – 479.en_US
dc.identifier.citedreferenceF. Götze, Asymptotic expansions for bivariate von Mises functionals, Z Wahrsch Verw Gebiete 50 1979, 333 – 355.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.