Show simple item record

A cost-driven partitioning algorithm for tandem trip-based material handling systems.

dc.contributor.authorPark, Jung H.en_US
dc.contributor.advisorBozer, Yavuz A.en_US
dc.date.accessioned2014-02-24T16:24:05Z
dc.date.available2014-02-24T16:24:05Z
dc.date.issued1995en_US
dc.identifier.other(UMI)AAI9610216en_US
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9610216en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/104846
dc.description.abstractThe tandem concept for material handling systems is an approach based on the "divide and conquer" principle where a set of pick up/deposit (P/D) points is partitioned into single-vehicle, non-overlapping zones. In this dissertation, using AGV systems as an application, we present a partitioning algorithm to obtain optimal or near optimal tandem configurations for trip-based material handling systems. The objective of the partitioning algorithm is to obtain a (feasible) tandem configuration that minimizes the total system cost while satisfying user-defined performance requirements. The cost model we use is a realistic model that was developed jointly with a major AGV vendor. To measure performance, we develop an analytical model (i.e., the "WIP model") to estimate the expected WIP in each zone. Unlike previous partitioning algorithms which relied on the evaluation of individual zones, here, we evaluate each tandem configuration as a whole after the workstations (and the transfer stations) have been assigned to their appropriate zones and transit loads, if any, have been identified and routed. We also perform an empirical comparison of tandem AGV configurations with their conventional counterparts and show that tandem AGV systems are indeed a low-cost, viable alternative to conventional AGV systems. Finally, we demonstrate through an interactive design tool that a tandem configuration obtained by the partitioning algorithm is subject to change and may be further refined or improved by the user.en_US
dc.format.extent134 p.en_US
dc.subjectEngineering, Industrialen_US
dc.subjectOperations Researchen_US
dc.titleA cost-driven partitioning algorithm for tandem trip-based material handling systems.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineIndustrial and Operations Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/104846/1/9610216.pdf
dc.description.filedescriptionDescription of 9610216.pdf : Restricted to UM users only.en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.