Show simple item record

Vortex ring interaction with a free surface.

dc.contributor.authorSong, Museoken_US
dc.contributor.advisorTryggvason, Gretaren_US
dc.contributor.advisorMeadows, Guyen_US
dc.date.accessioned2014-02-24T16:28:00Z
dc.date.available2014-02-24T16:28:00Z
dc.date.issued1991en_US
dc.identifier.other(UMI)AAI9124110en_US
dc.identifier.urihttp://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqm&rft_dat=xri:pqdiss:9124110en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/105450
dc.description.abstractThe interaction between a vortex ring and a free surface is studied experimentally and numerically. Three separate, but related subjects are discussed. First, a head-on collision of a large vortex ring with the free surface is investigated experimentally. Three different free surface patterns, that depend on the strength of the vortex ring and the elapsed time, are observed: a single circular depression of the free surface for weak vortex rings, axisymmetric outward propagating waves in the early stage of a strong vortex ring interaction, and fully three-dimensional waves in the later stages for both weak and strong rings. The early stage of the interaction is well predicted by an inviscid, axisymmetric numerical model. Secondly, the generation of surface waves due to a vortex reconnection at the free surface is investigated numerically. Guided by experimental observations, the Froude number is assumed to be small and hence the free surface motion is assumed to be linear. The ring is modeled as a collection of "essentially inviscid" vortons and the free surface evolution is solved by using a spectral method. The proposed model successfully captures the reconnection and the wave generation, and the results are comparable to available experimental observations. Short waves are generated due to rapid pressure changes when the vortex ring changes its topology. Thirdly, effects of a surface contaminant on the oblique collision of a vortex ring with a flat surface are studied numerically. The Froude number is assumed to be so small that the surface remains fiat. The full viscous Navier-Stokes equations and a conservation equation for the contaminant are solved by a finite difference method. For a clean surface, simulations at two Reynolds numbers (200 and 400) are done. For the contaminated surface, simulations with varying contamination parameter at the lower Reynolds number are performed. The results show a considerable modification of the underwater vortical flows due to the surface vorticity generated by the contaminant gradient. The distribution of the contaminant during the interaction depends on the strength of the contamination. Results are also compared to a collision with a no-slip surface.en_US
dc.format.extent158 p.en_US
dc.subjectApplied Mechanicsen_US
dc.subjectEngineering, Marine and Oceanen_US
dc.subjectPhysics, Fluid and Plasmaen_US
dc.titleVortex ring interaction with a free surface.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineNaval Architecture and Marine Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/105450/1/9124110.pdf
dc.description.filedescriptionDescription of 9124110.pdf : Restricted to UM users only.en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.