Show simple item record

Low‐energy electrons (5–50 keV) in the inner magnetosphere

dc.contributor.authorGanushkina, N. Y.en_US
dc.contributor.authorLiemohn, M. W.en_US
dc.contributor.authorAmariutei, O. A.en_US
dc.contributor.authorPitchford, D.en_US
dc.date.accessioned2014-03-05T18:18:51Z
dc.date.available2015-03-02T14:35:34Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationGanushkina, N. Y.; Liemohn, M. W.; Amariutei, O. A.; Pitchford, D. (2014). "Low‐energy electrons (5–50 keV) in the inner magnetosphere." Journal of Geophysical Research: Space Physics 119(1): 246-259.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106068
dc.description.abstractTransport and acceleration of the 5–50 keV electrons from the plasma sheet to geostationary orbit were investigated. These electrons constitute the low‐energy part of the seed population for the high‐energy MeV particles in the radiation belts and are responsible for surface charging. We modeled one nonstorm event on 24–30 November 2011, when the presence of isolated substorms was seen in the AE index. We used the Inner Magnetosphere Particle Transport and Acceleration Model (IMPTAM) with the boundary at 10 R E with moment values for the electrons in the plasma sheet. The output of the IMPTAM modeling was compared to the observed electron fluxes in 10 energy channels (from 5 to 50 keV) measured on board the AMC 12 geostationary spacecraft by the Compact Environmental Anomaly Sensor II with electrostatic analyzer instrument. The behavior of the fluxes depends on the electron energy. The IMPTAM model, driven by the observed parameters such as Interplanetary Magnetic Field (IMF) B y and B z , solar wind velocity, number density, dynamic pressure, and the Dst index, was not able to reproduce the observed peaks in the electron fluxes when no significant variations are present in those parameters. We launched several substorm‐associated electromagnetic pulses at the substorm onsets during the modeled period. The observed increases in the fluxes can be captured by IMPTAM when substorm‐associated electromagnetic fields are taken into account. Modifications of the pulse front velocity and arrival time are needed to exactly match the observed enhancements. Key Points Electron flux peaks due to substorm activity Solar wind driven inner magnetosphere model does not work for quiet times Substorm‐associated fields to explain electron flux peaksen_US
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherElectron Transporten_US
dc.subject.otherInner Magnetosphereen_US
dc.subject.otherParticle Acceleration During Substormsen_US
dc.titleLow‐energy electrons (5–50 keV) in the inner magnetosphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106068/1/jgra50735.pdf
dc.identifier.doi10.1002/2013JA019304en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSarris, T. E., and X. Li ( 2005 ), Evolution of the dispersionless injection boundary associated with substorms, Ann. Geophys., 23, 877 – 884.en_US
dc.identifier.citedreferenceSarris, T. E, X. Li, N. Tsaggas, and N. Paschalidis ( 2002 ), Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds, J. Geophys. Res., 107, 1033, doi: 10.1029/2001JA900166.en_US
dc.identifier.citedreferenceSchulz, M., and L. Lanzerotti ( 1974 ), Particle Diffusion in the Radiation Belts, Springer, New York.en_US
dc.identifier.citedreferenceScudder, J., et al. ( 1995 ), Hydra: A 3‐dimensional electron and ion hot plasma instrument for the Polar spacecraft of the GGS mission, Space Sci. Rev., 71, 459 – 495.en_US
dc.identifier.citedreferenceSergeev, V. A., M. A. Shukhtina, R. Rasinkangas, A. Korth, G. D. Reeves, H. J. Singer, M. F. Thomsen, and L. I. Vagina ( 1998 ), Event study of deep energetic particle injections during substorm, J. Geophys. Res., 103 ( A5 ), 9217 – 9234, doi: 10.1029/97JA03686.en_US
dc.identifier.citedreferenceShprits, Y. Y., and R. M. Thorne ( 2004 ), Time dependent radial diffusion modeling of relativistic electrons with realistic loss rates, Geophys. Res. Lett., 31, L08805, doi: 10.1029/2004GL019591.en_US
dc.identifier.citedreferenceShprits, Y. Y., N. P. Meredith, and R. M. Thorne ( 2007 ), Parameterization of radiation belt electron loss timescales due to interactions with chorus waves, Geophys. Res. Lett., 34, L11110, doi: 10.1029/2006GL029050.en_US
dc.identifier.citedreferenceSicard‐Piet, A., S. Bourdarie, D. Boscher, R. H. W. Friedel, M. Thomsen, T. Goka, H. Matsumoto, and H. Koshiishi ( 2008 ), A new international geostationary electron model: IGE‐2006, from 1 keV to 5.2 MeV, Space Weather, 6, S07003, doi: 10.1029/2007SW000368.en_US
dc.identifier.citedreferenceStern, D. ( 1975 ), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80 ( 4 ), 595 – 599.en_US
dc.identifier.citedreferenceThomsen, M. F., H. Korth, and R. C. Elphic ( 2002 ), Upper cutoff energy of the electron plasma sheet as a measure of magnetospheric convection strength, J. Geophys. Res., 107, 1331, doi: 10.1029/2001JA000148.en_US
dc.identifier.citedreferenceTsurutani, B. T., and E. J. Smith ( 1974 ), Postmidnight chorus: A substorm phenomenon, J. Geophys. Res., 79 ( 1 ), 118 – 127, doi: 10.1029/JA079i001p00118.en_US
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ), Modeling the Earth's magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 100, 5599 – 5612.en_US
dc.identifier.citedreferenceTsyganenko, N. A., and T. Mukai ( 2003 ), Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 108 ( A3 ), 1136, doi: 10.1029/2002JA009707.en_US
dc.identifier.citedreferenceTu, J.‐N., K. Tsuruda, H. Hayakawa, A. Matsuoka, T. Mukai, I. Nagano, and S. Yagitani ( 2000 ), Statistical nature of impulsive electric fields associated with fast ion flow in the near‐Earth plasma sheet, J. Geophys. Res., 105 ( A8 ), 18,901 – 18,907, doi: 10.1029/1999JA000428.en_US
dc.identifier.citedreferenceVakulin, I. I., O. S. Grafodatskii, V. I. Degtiarev, V. I. Dovgii, and G. A. Zherebtsov ( 1988 ), The radiation environment of the geostationary orbit for magnetically quiet conditions according to data from the Raduga communication satellites [in Russian], Kosmicheskie Issledovaniia, 26, 120 – 126.en_US
dc.identifier.citedreferenceVolland, H. ( 1973 ), A semiempirical model of large‐scale magnetospheric electric fields, J. Geophys. Res., 78 ( 1 ), 171 – 180.en_US
dc.identifier.citedreferenceWang, C.‐P., M. Gkioulidou, L. R. Lyons, R. A. Wolf, V. Angelopoulos, T. Nagai, J. M. Weygand, and A. T. Y. Lui ( 2011 ), Spatial distributions of ions and electrons from the plasma sheet to the inner magnetosphere: Comparisons between THEMIS‐Geotail statistical results and the Rice convection model, J. Geophys. Res., 116, A11216, doi: 10.1029/2011JA016809.en_US
dc.identifier.citedreferenceWang, C.‐P., M. Gkioulidou, L. R. Lyons, and V. Angelopoulos ( 2012 ), Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet, J. Geophys. Res., 117, A08215, doi: 10.1029/2012JA017658.en_US
dc.identifier.citedreferenceWhipple, E. C. ( 1981 ), Potentials of surfaces in space, Rep. Prog. Phys., 44, 1197 – 1250, doi: 10.1088/0034‐4885/44/11/002.en_US
dc.identifier.citedreferenceWygant, J., D. Rowland, H. J. Singer, M. Temerin, F. Mozer, and M. K. Hudson ( 1998 ), Experimental evidence on the role of the large spatial scale electric field in creating the ring current, J. Geophys. Res., 103 ( A12 ), 29,527 – 29,544, doi: 10.1029/98JA01436.en_US
dc.identifier.citedreferenceZaharia, S., C. Z. Cheng, and J. R. Johnson ( 2000 ), Particle transport and energization associated with substorms, J. Geophys. Res., 105 ( A8 ), 18,741 – 18,752, doi: 10.1029/1999JA000407.en_US
dc.identifier.citedreferenceAggson, T. L., J. P. Heppner, and N. C. Maynard ( 1983 ), Observations of large magnetospheric electric fields during the onset phase of a substorm, J. Geophys. Res., 88 ( A5 ), 3981 – 3990, doi: 10.1029/JA088iA05p03981.en_US
dc.identifier.citedreferenceAmariutei, O. A., and N. Y. Ganushkina ( 2012 ), On the prediction of the auroral westward electrojet index, Ann. Geophys., 30, 841 – 847.en_US
dc.identifier.citedreferenceBame, S. J., D. J. McComas, M. F. Thomsen, B. L. Barraclough, R. C. Elphic, J. P. Glore, J. T. Gosling, J. C. Chavez, E. P. Evans, and F. J. Wymer ( 1993 ), Magnetospheric plasma analyzer for spacecraft with constrained resources, Rev. Sci. Instr., 64, 1026 – 1033.en_US
dc.identifier.citedreferenceBogorad, A., C. Bowman, A. Dennis, J. Beck, D. Lang, R. Herschitz, M. Buehler, B. Blaes, and D. Martin ( 1995 ), Integrated environmental monitoring system for spacecraft, IEEE Trans. Nucl. Sci., 42, 2051 – 2057.en_US
dc.identifier.citedreferenceBoonsiriseth, A., R. M. Thorne, G. Lu, V. K. Jordanova, M. F. Thomsen, D. M. Ober, and A. J. Ridley ( 2001 ), A semiempirical equatorial mapping of AMIE convection electric potentials (MACEP) for the January 10, 1997, magnetic storm, J. Geophys. Res., 106 ( A7 ), 12,903 – 12,918, doi: 10.1029/1999JA000332.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, R. C. Elphic, T. E. Cayton, and D. J. McComas ( 1998 ), The transport of plasma sheet material from the distant tail to geosynchronous orbit, J. Geophys. Res., 103, 20,297 – 20,331.en_US
dc.identifier.citedreferenceBoyle, C., P. Reiff, and M. Hairston ( 1997 ), Empirical polar cap potentials, J. Geophys. Res., 102 ( A1 ), 111 – 125.en_US
dc.identifier.citedreferenceBrautigam, D. H., and J. M. Albert ( 2000 ), Radial diffusion analysis of outer radiation belt electrons during the 9 October 1990 magnetic storm, J. Geophys. Res., 105, 291 – 309.en_US
dc.identifier.citedreferenceCattell, C. A., and F. S. Mozer ( 1984 ), Substorm electric fields in the earth's magnetotail, in Magnetic Reconnection in Space and Laboratory Plasmas, Geophys. Monogr. Ser., vol. 30, edited by E. W. Hones Jr., pp. 208 – 215, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceChen, M. W., M. Schulz, G. Lu, and L. R. Lyons ( 2003 ), Quasi‐steady drift paths in a model magnetosphere with AMIE electric field: Implications for ring current formation, J. Geophys. Res., 108 ( A5 ), 1180, doi: 10.1029/2002JA009584.en_US
dc.identifier.citedreferenceChen, M. W., M. Schulz, P. C. Anderson, G. Lu, G. Germany, and M. Wüest ( 2005 ), Storm time distributions of diffuse auroral electron energy and X‐ray flux: Comparison of drift‐loss simulations with observations, J. Geophys. Res., 110, A03210, doi: 10.1029/2004JA010725.en_US
dc.identifier.citedreferenceChen, Y., G. D. Reeves, and R. H. W. Friedel ( 2007 ), The energization of relativistic electrons in the outer Van Allen radiation belt, Nat. Phys., 3, 614 – 617, doi: 10.1038/nphys655.en_US
dc.identifier.citedreferenceDavis, V. A., M. J. Mandell, and M. F. Thomsen ( 2008 ), Representation of the measured geosynchronous plasma environment in spacecraft charging calculations, J. Geophys. Res., 113, A10204, doi: 10.1029/2008JA013116.en_US
dc.identifier.citedreferenceDegtyarev, V. I., G. V. Popov, and S. S. Sheshukov ( 1990 ), Modelling the dynamics of fluxes of electrons with energies 30–300 keV in geostationary orbit, Geomag. Aeron., 30, 866 – 868.en_US
dc.identifier.citedreferenceDenton, M. H., M. F. Thomsen, H. Korth, S. Lynch, J. C. Zhang, and M. W. Liemohn ( 2005 ), Bulk plasma properties at geosynchronous orbit, J. Geophys. Res., 110, A07223, doi: 10.1029/2004JA010861.en_US
dc.identifier.citedreferenceDichter, B. K., J. 0. McGarity, M. R. Oberhardt, V. T. Jordanov, D. J. Sperry, A. C. Huber, J. A. Pantazis, E. G. Mullen, G. Ginet, and M. S. Gussenhoven ( 1998 ), Compact Environmental Anomaly Sensor (CEASE): A novel spacecraft instrument for in situ measurements of environmental conditions, IEEE Trans. Nucl. Sci., 45, 2758 – 2764.en_US
dc.identifier.citedreferenceElkington, S. R., M. Wiltberger, A. A. Chan, and D. N. Baker ( 2004 ), Physical models of the geospace radiation environment, J. Atmos. Sol. Terr. Phys., 66, 1371 – 1387.en_US
dc.identifier.citedreferenceFälthammar, C.‐G. ( 1965 ), Effects of time‐dependent electric fields on geomagnetically trapped radiation, J. Geophys. Res., 70, 2503 – 2516.en_US
dc.identifier.citedreferenceFrezet, M., J. P. Granger, L. Levy, and J. Hamelin ( 1988 ), Assessment of charging behaviour of Meteosat spacecraft in geosynchronous environment, ONERA Paper 233 248 presented at CERT, paper presented at 4th International Conference on Spacecraft Materials in Space Environment, ONERA Toulouse Research Center, Toulouse, France.en_US
dc.identifier.citedreferenceFriedel, R. H. W., H. Korth, M. G. Henderson, M. E. Thomsen, and J. D. Scudder ( 2001 ), Plasma sheet access to the inner magnetosphere, J. Geophys. Res., 106, 5845 – 5858.en_US
dc.identifier.citedreferenceFok, M.‐C., T. E. Moore, and W. N. Spjeldvik ( 2001 ), Rapid enhancement of radiation belt electron fluxes due to substorm dipolarization of the geomagnetic field, J. Geophys. Res., 106 ( A3 ), 3873 – 3882, doi: 10.1029/2000JA000150.en_US
dc.identifier.citedreferenceGanushkina, N. Y., T. I. Pulkkinen, V. F. Bashkirov, D. N. Baker, and X. Li ( 2001 ), Formation of intense nose structures, Geophys. Res. Lett., 28 ( 3 ), 491 – 494.en_US
dc.identifier.citedreferenceGanushkina, N. Y., T. I. Pulkkinen, and T. Fritz ( 2005 ), Role of substorm‐associated impulsive electric fields in the ring current development during storms, Ann. Geophys., 23, 579 – 591.en_US
dc.identifier.citedreferenceGanushkina, N. Y., T. I. Pulkkinen, M. Liemohn, and A. Milillo ( 2006 ), Evolution of the proton ring current energy distribution during April 21–25, 2001 storm, J. Geophys. Res., 111, A11S08, doi: 10.1029/2006JA011609.en_US
dc.identifier.citedreferenceGanushkina, N. Y., M. W. Liemohn, and T. I. Pulkkinen ( 2012 ), Storm‐time ring current: Model‐dependent results, Ann. Geophys., 30, 177 – 202.en_US
dc.identifier.citedreferenceGanushkina, N. Y., O. Amariutei, Y. Y. Shpritz, and M. Liemohn ( 2013 ), Transport of the plasma sheet electrons to the geostationary distances, J. Geophys. Res. Space Physics, 118, 82 – 98, doi: 10.1029/2012JA017923.en_US
dc.identifier.citedreferenceGarrett, H. B. ( 1981 ), The charging of spacecraft surfaces, Rev. Geophys., 19 ( 4 ), 577 – 616, doi: 10.1029/RG019i004p00577.en_US
dc.identifier.citedreferenceGrafodatskiy, O. S., V. I. Degtyarev, A. G. Kozlov, V. I. Lazarev, O. I. Platonov, G. V. Popov, and M. V. Teltsov ( 1987 ), Relationship between characteristics of low‐energy electrons and geomagnetic disturbance in geostationary orbit, Geomag. Aeron., 27, 494 – 496.en_US
dc.identifier.citedreferenceHardy, D. A., D. M. Walton, A. D. Johnstone, M. F. Smith, M. P. Gough, A. Huber, J. Pantazis, and R. Burkhardt ( 1993 ), Low Energy Plasma Analyzer, IEEE Trans. Nucl. Sci., 40, 246 – 251.en_US
dc.identifier.citedreferenceHoeber, C. F., E. A. Robertson, I. Katz, V. A. Davis, and D. B. Snyder ( 1998 ), Solar array augmented electrostatic discharge in GEO, AIAA Paper 98–1401, paper presented at 17th AIAA International Communications Spacecraft Systems Conference and Exhibit, Am. Inst. of Aeron, and Astron., Yokohama, Japan.en_US
dc.identifier.citedreferenceHorne, R. B., and R. M. Thorne ( 2003 ), Relativistic electron acceleration and precipitation during resonant interactions with whistler‐mode chorus, Geophys. Res. Lett., 30 ( 10 ), 1527, doi: 10.1029/2003GL016973.en_US
dc.identifier.citedreferenceHorne, R. B., et al. ( 2005 ), Wave acceleration of electrons in the Van Allen radiation belts, Nature, 437, 227 – 230, doi: 10.1038/nature03939.en_US
dc.identifier.citedreferenceHorne, R. B., et al. ( 2013 ), Forecasting the Earth's radiation belts and modelling solar energetic particle events: Recent results from SPACECAST, J. Space Weather Space Clim., 3, A20, doi: 10.1051/swsc/2013042.en_US
dc.identifier.citedreferenceIngraham, J. C., T. E. Cayton, R. D. Belian, R. A. Christensen, R. H. W. Friedel, M. M. Meier, G. D. Reeves, and M. Tuszewski ( 2001 ), Substorm injection of relativistic electrons to geosynchronous orbit during the great magnetic storm of March 24, 1991, J. Geophys. Res., 106, 25,759 – 25,776.en_US
dc.identifier.citedreferenceKaufmann, R. L., W. R. Paterson, and L. A. Frank ( 2005 ), Relationships between the ion flow speed, magnetic flux transport rate, and other plasma sheet parameters, J. Geophys. Res., 110, A09216, doi: 10.1029/2005JA011068.en_US
dc.identifier.citedreferenceKennel, C. F., and H. E. Petschek ( 1966 ), Limit on stable trapped particle fluxes, J. Geophys. Res., 71 ( 1 ), 1 – 28, doi: 10.1029/JZ071i001p00001.en_US
dc.identifier.citedreferenceKennel, C. F., and R. M. Thorne ( 1967 ), Unstable growth of unducted whistlers propagating at an angle to the geomagnetic field, J. Geophys. Res., 72 ( 3 ), 871 – 878, doi: 10.1029/JZ072i003p00871.en_US
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, T. S. Newman, M.‐C. Fok, and A. J. Ridley ( 2004a ), Magnetospheric convection electric field dynamics and stormtime particle energization: Case study of the magnetic storm of 4 May 1998, Ann. Geophys., 22, 497 – 510.en_US
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, M.‐C. Fok, T. S. Newman, and A. J. Ridley ( 2004b ), Stormtime particle energization with AMIE potentials, J. Geophys. Res., 109, A05209, doi: 10.1029/2003JA010186.en_US
dc.identifier.citedreferenceKoons, H. C., J. E. Mazur, R. S. Selesnick, J. B. Blake, J. F. Fennell, J. L. Roeder, and P. C. Anderson ( 1999 ), The impact of the space environment on space systems, Aerospace Rep. TR‐99 (1670)‐1, Aerospace Corp., El Segundo, Calif.en_US
dc.identifier.citedreferenceKorth, H., M. F. Thomsen, J. E. Borovsky, and D. J. McComas ( 1999 ), Plasma sheet access to geosynchronous orbit, J. Geophys. Res., 104, 25,047 – 25,061.en_US
dc.identifier.citedreferenceKozelova, T. V., L. L. Lazutin, B. V. Kozelov, N. Meredith, and M. A. Danielides ( 2006 ), Alternating bursts of low energy ions and electrons near the substorm onset, Ann. Geophys., 24, 1957 – 1968.en_US
dc.identifier.citedreferenceKurita, S., et al. ( 2011 ), Transport and loss of the inner plasma sheet electrons: THEMIS observations, J. Geophys. Res., 116, A03201, doi: 10.1029/2010JA015975.en_US
dc.identifier.citedreferenceLejosne, S., D. Boscher, V. Maget, and G. Rolland ( 2013 ), Deriving electromagnetic radial diffusion coefficients of radiation belt equatorial particles for different levels of magnetic activity based on magnetic field measurements at geostationary orbit, J. Geophys. Res. Space Physics, 118, 3147 – 3156, doi: 10.1002/jgra.50361.en_US
dc.identifier.citedreferenceLi, X., D. N. Baker, M. Temerin, G. D. Reeves, and R. D. Belian ( 1998 ), Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms, Geophys. Res. Lett., 25, 3763 – 3766.en_US
dc.identifier.citedreferenceLi, X., T. E. Sarris, D. N. Baker, W. K. Peterson, and H. J. Singer ( 2003 ), Simulation of energetic particle injections associated with a substorm on August 27, 2001, Geophys. Res. Lett., 30, 1004, doi: 10.1029/2002GL015967.en_US
dc.identifier.citedreferenceLi, W., R. M. Thorne, N. P. Meredith, R. B. Horne, J. Bortnik, Y. Y. Shprits, and B. Ni ( 2008 ), Evaluation of whistler‐mode chorus amplification during an injection event observed on CRRES, J. Geophys. Res., 113, A09210, doi: 10.1029/2008JA013129.en_US
dc.identifier.citedreferenceLi, W., R. Thorne, J. Bortnik, R. McPherron, Y. Nishimura, V. Angelopoulos, and I. G. Richardson ( 2012 ), Evolution of chorus waves and their source electrons during storms driven by corotating interaction regions, J. Geophys. Res., 117, A08209, doi: 10.1029/2012JA017797.en_US
dc.identifier.citedreferenceLiu, W. L., X. Li, T. Sarris, C. Cully, R. Ergun, V. Angelopoulos, D. Larson, A. Keiling, K. H. Glassmeier, and H. U. Auster ( 2009 ), Observation and modeling of the injection observed by THEMIS and LANL satellites during the 23 March 2007 substorm event, J. Geophys. Res., 114, A00C18, doi: 10.1029/2008JA013498.en_US
dc.identifier.citedreferenceLyons, L. R., D.‐Y. Lee, R. M. Thorne, R. B. Horne, and A. J. Smith ( 2005 ), Solar wind‐magnetosphere coupling leading to relativistic electron energization during high‐speed streams, J. Geophys. Res., 110, A11202, doi: 10.1029/2005JA011254.en_US
dc.identifier.citedreferenceMaynard, N. C., W. J. Burke, E. M. Basinska, G. M. Erickson, W. J. Hughes, H. J. Singer, A. G. Yahnin, D. A. Hardy, and F. S. Mozer ( 1996 ), Dynamics of the inner magnetosphere near times of substorm onsets, J. Geophys. Res., 101 ( A4 ), 7705 – 7736, doi: 10.1029/95JA03856.en_US
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, and R. R. Anderson ( 2001 ), Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies, J. Geophys. Res., 106, 13,165 – 13,178.en_US
dc.identifier.citedreferenceMithaiwala, M. J., and W. Horton ( 2005 ), Substorm injections produce sufficient electron energization to account for MeV flux enhancements following some storms, J. Geophys. Res., 110, A07224, doi: 10.1029/2004JA010511.en_US
dc.identifier.citedreferenceMiyoshi, Y. S., V. K. Jordanova, A. Morioka, M. F. Thomsen, G. D. Reeves, D. S. Evans, and J. C. Green ( 2006 ), Observations and modeling of energetic electron dynamics during the October 2001 storm, J. Geophys. Res., 111, A11S02, doi: 10.1029/2005JA011351.en_US
dc.identifier.citedreferenceOhtani, S. ( 1998 ), Earthward expansion of tail current disruption: Dual‐satellite study, J. Geophys. Res., 103 ( A4 ), 6815 – 6825, doi: 10.1029/98JA00013.en_US
dc.identifier.citedreferencePulkkinen, T. I., N. Y. Ganushkina, E. Donovan, X. Li, G. D. Reeves, C. T. Russell, H. J. Singer, and J. A. Slavin ( 2005 ), Storm‐substorm coupling during 16 Hours of Dst steadily at 150 nT, in The Inner Magnetosphere: Physics and Modeling, edited by T. I. Pulkkinen, N. A. Tsyganenko, and R. H. W. Friedel, pp. 155 – 161, AGU, Washington, D. C.en_US
dc.identifier.citedreferencePurvis, C. K., H. B. Garrett, A. C. Whittlesey, and N. J. Stevens ( 1984 ), Design guidelines for assessing and controlling spacecraft charging effects, NASA Tech. Rep., NASA‐TR 2361.en_US
dc.identifier.citedreferenceReeves, G. D., M. G. Henderson, P. S. McLachlan, R. D. Belian, R. H. W. Friedel, and A. Korth ( 1996 ), Radial propagation of substorm injections, Proceedings of the 3rd International Conference on Substorms, Versailles, France.en_US
dc.identifier.citedreferenceRoederer, J. G. ( 1970 ), Dynamics of Geomagnetically Trapped Radiation, Springer‐Verlag, New York.en_US
dc.identifier.citedreferenceRowland, D. E., and J. R. Wygant ( 1998 ), Dependence of the large‐scale, inner magnetospheric electric field on geomagnetic activity, J. Geophys. Res., 103 ( A7 ), 14,959 – 14,964, doi: 10.1029/97JA03524.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.