Show simple item record

Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers

dc.contributor.authorGallardo‐lacourt, Beaen_US
dc.contributor.authorNishimura, Y.en_US
dc.contributor.authorLyons, L. R.en_US
dc.contributor.authorZou, S.en_US
dc.contributor.authorAngelopoulos, V.en_US
dc.contributor.authorDonovan, E.en_US
dc.contributor.authorMcWilliams, K. A.en_US
dc.contributor.authorRuohoniemi, J. M.en_US
dc.contributor.authorNishitani, N.en_US
dc.date.accessioned2014-03-05T18:18:53Z
dc.date.available2015-03-02T14:35:34Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationGallardo‐lacourt, Bea ; Nishimura, Y.; Lyons, L. R.; Zou, S.; Angelopoulos, V.; Donovan, E.; McWilliams, K. A.; Ruohoniemi, J. M.; Nishitani, N. (2014). "Coordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamers." Journal of Geophysical Research: Space Physics 119(1): 142-150.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106072
dc.description.abstractNightside auroral zone localized flow channels, typically associated with auroral poleward boundary intensifications and streamers, are an important component of high‐latitude ionospheric plasma dynamics. We investigate the structure of these flow channels using two‐dimensional line‐of‐sight flow observations from the Super Dual Auroral Radar Network (SuperDARN) radars and auroral images from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) ground‐based all‐sky imager (ASI) array. Radar echoes captured <~500 km horizontal distance from the radars were mainly used to detect small‐scale flow structures that would otherwise be missed or poorly resolved in long‐range radar echoes. After identifying 135 auroral streamers in the ASI images at close‐radar capture locations, we examined the associated ionospheric flow data in the radar echoes. Flow bursts and streamers are invariably correlated in all events. The flow bursts are often directed equatorward and appear simultaneously with the streamers. Equatorward flows are located just to the east of the streamers. Less frequently (~10% of the time), a poleward flow enhancement was detected even when a streamer propagated equatorward, the poleward flow enhancement being located to the west of the auroral streamer, or to the east of the equatorward flow enhancement, consistently with the spatial relationship between flow shear and upward field‐aligned currents in plasma sheet flow bursts. The azimuthal width of the flow channel is, on average, ~75 km, and the azimuthal offset of the equatorward flow channel relative to the auroral streamer is ~57 km eastward. This study demonstrates the capability of radar‐imager pairs for identifying the 2‐D structure of localized flows associated with plasma sheet flow bursts. Key Points Structure of flow channels using SuperDARN radars and THEMIS ASI is investigated Simultaneous flow bursts and streamers are invariably correlated in all events 3‐D structure of flows consistent with plasma flow shears around a BBF channelen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherAuroral Streamersen_US
dc.subject.otherSuperDARNen_US
dc.subject.otherTHEMIS ASIen_US
dc.subject.otherIonospheric Flow Patternen_US
dc.titleCoordinated SuperDARN THEMIS ASI observations of mesoscale flow bursts associated with auroral streamersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106072/1/jgra50744.pdf
dc.identifier.doi10.1002/2013JA019245en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSergeev, V. A., et al. ( 2000 ), Multiple spacecraft observation of a narrow transient plasma jet in the Earth's plasma sheet, Geophys. Res. Lett., 27 ( 6 ), 851 – 854.en_US
dc.identifier.citedreferenceBirn, J., J. Reader, Y. L. Wang, R. A. Wolf, and M. Hesse ( 2004 ), On the propagation of bubbles in the geomagnetic tail, Ann. Geophys., 22, 1773 – 1786.en_US
dc.identifier.citedreferenceGreenwald, R. A., et al. ( 1995 ), DARN/SuperDARN: A global view of high‐latitude convection, Space Sci. Rev., 71, 763 – 796.en_US
dc.identifier.citedreferenceHaldoupis, C. ( 1989 ), A review on radio studies of auroral E region ionospheric irregularities, Ann. Geophys., 7, 239.en_US
dc.identifier.citedreferenceHenderson, M. G., G. D. Reeves, and J. S. Murphree ( 1998 ), Are north–south structures an ionospheric manifestation of bursty bulk flows?, Geophys. Res. Lett., 25, 3737 – 3740.en_US
dc.identifier.citedreferenceKauristie, K., V. A. Sergeev, M. Kubyshkina, T. I. Pulkkinen, V. Angelopoulos, T. Phan, R. P. Lin, and J. A. Slavin ( 2000 ), Ionospheric current signatures of transient plasma sheet flows, J. Geophys. Res., 105, 10,677 – 10,688.en_US
dc.identifier.citedreferenceKeiling, A., et al. ( 2009 ), THEMIS ground‐space observations during the development of auroral spirals, Ann. Geophys., 27, 4317 – 4332, doi: 10.5194/angeo‐27‐4317‐2009.en_US
dc.identifier.citedreferenceKoustov, A. V., D. W. Danskin, R. A. Makarevitch, and J. D. Gorin ( 2005 ), On the relationship between the velocity of E region HF echoes and E x B plasma drift, Ann. Geophys., 23, 371, doi: 10.5194/angeo‐23‐371‐2005.en_US
dc.identifier.citedreferenceLyons, L. R., T. Nagai, G. T. Blanchard, J. C. Samson, T. Yamamoto, T. Mukai, A. Nishida, and S. Kokobun ( 1999 ), Association between Geotail plasma flows and auroral poleward boundary intensifications observed by CANOPUS photometers, J. Geophys. Res., 104, 4485 – 4497.en_US
dc.identifier.citedreferenceLyons, L. R., E. Zesta, Y. Xu, E. R. Sanchez, J. C. Samson, G. D. Reeves, J. M. Ruohomiemi, and J. B. Sigwarth ( 2002 ), Auroral poleward boundary intensifications and tail bursty flows: A manifestation of a large‐scale ULF oscilation?, J. Geophys. Res., 107 ( A11 ), 1352, doi: 10.1029/2001JA000242.en_US
dc.identifier.citedreferenceMende, S. B., S. E. Harris, H. U. Frey, V. Angelopoulos, C. T. Russell, E. Donovan, B. Jackel, M. Greffen, and M. Peticolas ( 2008 ), The THEMIS array of ground‐based observatories for the study of auroral substorms, Space Sci. Rev., 141, 357, doi: 10.1007/s11212‐008‐9380‐x.en_US
dc.identifier.citedreferenceNakamura, R., W. Baumjohann, R. Schödel, M. Brittnacher, V. A. Sergeev, M. Kubyshkina, T. Mukai, and K. Liou ( 2001 ), Earthward flow bursts, auroral streamers, and small expansions, J. Geophys. Res., 106, 10,791 – 10,804.en_US
dc.identifier.citedreferenceNakamura, R., et al. ( 2004 ), Spatial scale of high‐speed flows in the plasma sheet observed by Cluster, Geophys. Res. Lett., 31, L09804, doi: 10.1029/2004GL019558.en_US
dc.identifier.citedreferencePitkänen, T., A. T. Aikio, O. Amm, K. Kauristie, H. Nilsson, and K. U. Kaila ( 2011 ), EISCAT‐Cluster observations of quiet‐time near‐Earth magnetotail fast flows and their signatures in the ionosphere, Ann. Geophys., 29, 299 – 319, doi: 10.5194/angeo‐29‐299‐2011.en_US
dc.identifier.citedreferenceSergeev, V. A., O. A. Aulamo, R. L. Pillinen, M. K. Vallinkoski, T. Bosinger, C. A. Cattell, R. C. Elphic, and D. J. Williams ( 1990 ), Non‐substorm short‐lived injection events in the ionosphere and magnetosphere, Planet. Space Sci., 38, 231.en_US
dc.identifier.citedreferenceSergeev, V. A., K. Liou, C.‐I. Meng, P. T. Newell, M. Brittnacher, G. Parks, and G. D. Reeves ( 1999 ), Development of auroral streamers in association with localized impulsive injections to the inner magnetotail, Geophys. Res. Lett., 26 ( 3 ), 417 – 420.en_US
dc.identifier.citedreferenceSergeev, V. A., K. Liou, P. T. Newell, S.‐I. Ohtani, M. R. Hairston, and F. Rich ( 2004 ), Auroral streamers: Characteristics of associated precipitation, convection and field‐aligned currents, Ann. Geophys., 22, 537 – 548, doi: 10.5194/angeo‐22‐537‐2004.en_US
dc.identifier.citedreferenceShi, Y., E. Zesta, L. R. Lyons, J. Yang, A. Boudouridis, Y. S. Ge, J. M. Ruohoniemi, and S. Mende ( 2012 ), Two‐dimensional ionospheric flow pattern associated with auroral streamers, J. Geophys. Res., 117, A02208, doi: 10.1029/2011JA017110.en_US
dc.identifier.citedreferenceYang, J., F. R. Toffoletto, R. A. Wolf, and S. Sazykin ( 2011 ), RCM‐E simulation of ion acceleration during an idealized plasma sheet bubble injection, J. Geophys. Res., 116, A05207, doi: 10.1029/2010JA016346.en_US
dc.identifier.citedreferenceYang, J., F. R. Toffoletto, R. A. Wolf, S. Sazykin, P. A. Ontiveros, and J. M. Weygand ( 2012 ), Large‐scale current systems and ground magnetic disturbance during deep substorm injections, J. Geophys. Res., 117, A04223, doi: 10.1029/2011JA017415.en_US
dc.identifier.citedreferenceZesta, E., L. R. Lyons, and E. Donovan ( 2000 ), The auroral signature od Earthward flow burst observed in the magnetotail, Geophys. Res. Lett., 27, 3241 – 3244, doi: 10.1029/2000GL000027.en_US
dc.identifier.citedreferenceZesta, E., E. Donovan, L. Lyons, G. Enno, J. S. Murphree, and L. Cogger ( 2002 ), The two‐dimensional structure of auroral poleward boundary intensification (PBIs), J. Geophys. Res., 107 ( A11 ), 1350, doi: 10.1029/2001JA000260.en_US
dc.identifier.citedreferenceZesta, E., L. Lyons, C.‐P. Wang, E. Donovan, H. Frey, and T. Nagai ( 2006 ), Auroral poleward boundary intensification (PBIs): Their two‐dimensional structure and associated dynamics in the plasma sheet, J. Geophys. Res., 111 ( 111 ), A05201, doi: 10.1029/2004JA010640.en_US
dc.identifier.citedreferenceZou, S., L. R. Lyons, M. J. Nicolls, and C. J. Heinselman ( 2009 ), PFISR observations of strong azimuthal flow bursts in the ionosphere and their relation to nightside aurora, J. Atmos. Sol. Terr. Phys., doi: 10.1016/j.jastp.2008.06.015.en_US
dc.identifier.citedreferenceZou, S., et al. ( 2010 ), Identification of substorm onset location and pre‐onset sequence using Reimei, THEMIS GBO, PFISR and Geotail, J. Geophys. Res., 115, A12309, doi: 10.1029/2010JA015520.en_US
dc.identifier.citedreferenceZou, Y., Y. Nishimura, L. R. Lyons, E. F. Donovan, J. M. Ruohoniemi, N. Nishitani, and K. A. McWilliams ( 2013 ), Statistical relationships between enhanced polar cap flows and PBIs, J. Geophys. Res. Space Phys., doi: 10.1002/2013JA019269, in press.en_US
dc.identifier.citedreferenceAikio, A. T., T. Lakkala, A. Kozlovsky, and P. J. S. Williams ( 2002 ), Electric fields and currents of stable drifting auroral arcs in the evening sector, J. Geophys. Res., 107 ( A12 ), 1424, doi: 10.1029/2001JA009172.en_US
dc.identifier.citedreferenceAmm, O., A. Pajunpaa, and U. Brandstrom ( 1999 ), Spatial distribution of conductances and currents associated with a north–south auroral form during a multiple‐substorm period, Ann. Geophys., 17, 1385.en_US
dc.identifier.citedreferenceAngelopoulos, V., W. Baumjohann, C. F. Kennel, F. V. Coroniti, M. G. Kivelson, R. Pellat, R. J. Walker, H. Lühr, and G. Paschmann ( 1992 ), Bursty bulk flows in the inner central plasma sheet, J. Geophys. Res., 97, 4027 – 4039, doi: 10.1029/91JA02701.en_US
dc.identifier.citedreferenceAngelopoulos, V., C. F. Kennel, F. V. Coroniti, R. Pellat, M. G. Kivelson, R. J. Walker, C. T. Russell, W. Baumjohann, W. C. Feldman, and J. T. Gosling ( 1994 ), Statistical characteristics of bursty bulk flow events, J. Geophys. Res., 99, 21,257 – 21,280.en_US
dc.identifier.citedreferenceAngelopoulos, V., et al. ( 1996 ), Multipoint analysis of a bursty bulk flow event on April 11, 1985, J. Geophys. Res., 101, 4967 – 4989.en_US
dc.identifier.citedreferenceAngelopoulos, V., et al. ( 1997 ), Magnetotail flow bursts: Association to global magnetospheric circulation, relationship to ionospheric activity and direct evidence for localization, Geophys. Res. Lett., 24, 2271 – 2274.en_US
dc.identifier.citedreferenceBaumjohann, W. ( 1993 ), The near‐Earth plasma sheet: An AMPTE/IRM perspective, Space Sci. Rev., 64, 141 – 191.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.