Show simple item record

Copy number variants are produced in response to low‐dose ionizing radiation in cultured cells

dc.contributor.authorArlt, Martin F.en_US
dc.contributor.authorRajendran, Sounthariaen_US
dc.contributor.authorBirkeland, Shanda R.en_US
dc.contributor.authorWilson, Thomas E.en_US
dc.contributor.authorGlover, Thomas W.en_US
dc.date.accessioned2014-03-05T18:18:58Z
dc.date.available2015-04-16T14:24:20Zen_US
dc.date.issued2014-03en_US
dc.identifier.citationArlt, Martin F.; Rajendran, Sountharia; Birkeland, Shanda R.; Wilson, Thomas E.; Glover, Thomas W. (2014). "Copy number variants are produced in response to low‐dose ionizing radiation in cultured cells." Environmental and Molecular Mutagenesis 55(2): 103-113.en_US
dc.identifier.issn0893-6692en_US
dc.identifier.issn1098-2280en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106089
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherReplication Stressen_US
dc.subject.otherIonizing Radiationen_US
dc.subject.otherCNVen_US
dc.titleCopy number variants are produced in response to low‐dose ionizing radiation in cultured cellsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106089/1/em21840.pdf
dc.identifier.doi10.1002/em.21840en_US
dc.identifier.sourceEnvironmental and Molecular Mutagenesisen_US
dc.identifier.citedreferenceKrishnamoorthy K, Thomson J. 2004. A more powerful test for comparing two Poisson means. J Stat Plan Inference 119: 23 – 35.en_US
dc.identifier.citedreferenceDimitrijevic‐Bussod M, Balzaretti‐Maggi VS, Gadbois DM. 1999. Extracellular matrix and radiation G1 cell cycle arrest in human fibroblasts. Cancer Res 59: 4843 – 4847.en_US
dc.identifier.citedreferenceDurkin SG, Ragland RL, Arlt MF, Mulle JG, Warren ST, Glover TW. 2008. Replication stress induces tumor‐like microdeletions in FHIT /FRA3B. Proc Natl Acad Sci USA 105: 246 – 251.en_US
dc.identifier.citedreferenceGadbois DM, Bradbury EM, Lehnert BE. 1997. Control of radiation‐induced G1 arrest by cell‐substratum interactions. Cancer Res 57: 1151 – 1156.en_US
dc.identifier.citedreferenceGadbois DM, Crissman HA, Nastasi A, Habbersett R, Wang SK, Chen D, Lehnert BE. 1996. Alterations in the progression of cells through the cell cycle after exposure to alpha particles or gamma rays. Radiat Res 146: 414 – 424.en_US
dc.identifier.citedreferenceGatei M, Sloper K, Sorensen C, Syljuasen R, Falck J, Hobson K, Savage K, Lukas J, Zhou BB, Bartek J, et al. 2003. Ataxia‐telangiectasia‐mutated (ATM) and NBS1‐dependent phosphorylation of Chk1 on Ser‐317 in response to ionizing radiation. J Biol Chem 278: 14806 – 14811.en_US
dc.identifier.citedreferenceGlessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, et al. 2009. Autism genome‐wide copy number variation reveals ubiquitin and neuronal genes. Nature 459: 569 – 573.en_US
dc.identifier.citedreferenceGuadagno TM, Assoian RK. 1991. G1/S control of anchorage‐independent growth in the fibroblast cell cycle. J Cell Biol 115: 1419 – 1425.en_US
dc.identifier.citedreferenceHarper JV, Anderson JA, O'Neill P. 2010. Radiation induced DNA DSBs: Contribution from stalled replication forks? DNA Repair (Amst) 9: 907 – 913.en_US
dc.identifier.citedreferenceHastings PJ, Ira G, Lupski JR. 2009. A microhomology‐mediated break‐induced replication model for the origin of human copy number variation. PLoS Genet 5: e1000327.en_US
dc.identifier.citedreferenceHelleday T, Lo J, van Gent DC, Engelward BP. 2007. DNA double‐strand break repair: from mechanistic understanding to cancer treatment. DNA Repair (Amst) 6: 923 – 935.en_US
dc.identifier.citedreferenceHuang HL, Hsing HW, Lai TC, Chen YW, Lee TR, Chan HT, Lyu PC, Wu CL, Lu YC, Lin ST, et al. 2010. Trypsin‐induced proteome alteration during cell subculture in mammalian cells. J Biomed Sci 17: 36.en_US
dc.identifier.citedreferenceKarlsson R, Graae L, Lekman M, Wang D, Favis R, Axelsson T, Galter D, Belin AC, Paddock S. 2012. MAGI1 copy number variation in bipolar affective disorder and schizophrenia. Biol Psychiatry 71: 922 – 930.en_US
dc.identifier.citedreferenceKent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. 2002. The human genome browser at UCSC. Genome Res 12: 996 – 1006.en_US
dc.identifier.citedreferenceKohno T, Yokota J. 2006. Molecular processes of chromosome 9p21 deletions causing inactivation of the p16 tumor suppressor gene in human cancer: deduction from structural analysis of breakpoints for deletions. DNA Repair (Amst) 5: 1273 – 1281.en_US
dc.identifier.citedreferenceKresse SH, Ohnstad HO, Paulsen EB, Bjerkehagen B, Szuhai K, Serra M, Schaefer KL, Myklebost O, Meza‐Zepeda LA. 2009. LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. Genes Chromosomes Cancer 48: 679 – 693.en_US
dc.identifier.citedreferenceKuzminov A. 2001. Single‐strand interruptions in replicating chromosomes cause double‐strand breaks. Proc Natl Acad Sci USA 98: 8241 – 8246.en_US
dc.identifier.citedreferenceLjungman M. 1999. Repair of radiation‐induced DNA strand breaks does not occur preferentially in transcriptionally active DNA. Radiat Res 152: 444 – 449.en_US
dc.identifier.citedreferencePasic I, Shlien A, Durbin AD, Stavropoulos DJ, Baskin B, Ray PN, Novokmet A, Malkin D. 2010. Recurrent focal copy‐number changes and loss of heterozygosity implicate two noncoding RNAs and one tumor suppressor gene at chromosome 3q13.31 in osteosarcoma. Cancer Res 70: 160 – 171.en_US
dc.identifier.citedreferenceSaleh‐Gohari N, Bryant HE, Schultz N, Parker KM, Cassel TN, Helleday T. 2005. Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single‐strand breaks. Mol Cell Biol 25: 7158 – 7169.en_US
dc.identifier.citedreferenceWard JF. 1988. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol 35: 95 – 125.en_US
dc.identifier.citedreferenceZhang F, Gu W, Hurles ME, Lupski JR. 2009. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 10: 451 – 481.en_US
dc.identifier.citedreferenceZhao H, Piwnica‐Worms H. 2001. ATR‐mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21: 4129 – 4139.en_US
dc.identifier.citedreferenceArlt MF, Mulle JG, Schaibley VM, Ragland RL, Durkin SG, Warren ST, Glover TW. 2009. Replication stress induces genome‐wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am J Hum Genet 84: 339 – 350.en_US
dc.identifier.citedreferenceArlt MF, Ozdemir AC, Birkeland SR, Lyons RH Jr, Glover TW, Wilson TE. 2011a. Comparison of constitutional and replication stress‐induced genome structural variation by SNP array and mate‐pair sequencing. Genetics 187: 675 – 683.en_US
dc.identifier.citedreferenceArlt MF, Ozdemir AC, Birkeland SR, Wilson TE, Glover TW. 2011b. Hydroxyurea induces de novo copy number variants in human cells. Proc Natl Acad Sci USA 108: 17360 – 17365.en_US
dc.identifier.citedreferenceArlt MF, Rajendran S, Birkeland SR, Wilson TE, Glover TW. 2012. De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4‐dependent nonhomologous end joining. PLoS Genet 8: e1002981.en_US
dc.identifier.citedreferenceBeunders G, Voorhoeve E, Golzio C, Pardo LM, Rosenfeld JA, Talkowski ME, Simonic I, Lionel AC, Vergult S, Pyatt RE, et al. 2013. Exonic deletions in AUTS2 cause a syndromic form of intellectual disability and suggest a critical role for the C terminus. Am J Hum Genet 92: 210 – 220.en_US
dc.identifier.citedreferenceBignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, Buck G, Chen L, Beare D, Latimer C, et al. 2010. Signatures of mutation and selection in the cancer genome. Nature 463: 893 – 898.en_US
dc.identifier.citedreferenceBirkeland SR, Jin N, Ozdemir AC, Lyons RH Jr, Weisman LS, Wilson TE. 2010. Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole‐genome sequencing. Genetics 186: 1127 – 1137.en_US
dc.identifier.citedreferenceCarvalho CM, Pehlivan D, Ramocki MB, Fang P, Alleva B, Franco LM, Belmont JW, Hastings PJ, Lupski JR. 2013. Replicative mechanisms for CNV formation are error prone. Nat Genet 45: 1319 – 1326.en_US
dc.identifier.citedreferenceDi Leonardo A, Linke SP, Clarkin K, Wahl GM. 1994. DNA damage triggers a prolonged p53‐dependent G1 arrest and long‐term induction of Cip1 in normal human fibroblasts. Genes Dev 8: 2540 – 2551.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.