Show simple item record

Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection

dc.contributor.authorLavraud, Benoiten_US
dc.contributor.authorRuffenach, Alexisen_US
dc.contributor.authorRouillard, Alexis P.en_US
dc.contributor.authorKajdic, Primozen_US
dc.contributor.authorManchester, Ward B.en_US
dc.contributor.authorLugaz, Noéen_US
dc.date.accessioned2014-03-05T18:19:07Z
dc.date.available2015-03-02T14:35:34Zen_US
dc.date.issued2014-01en_US
dc.identifier.citationLavraud, Benoit; Ruffenach, Alexis; Rouillard, Alexis P.; Kajdic, Primoz; Manchester, Ward B.; Lugaz, Noé (2014). "Geoâ effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection." Journal of Geophysical Research: Space Physics 119(1): 26-35.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/106123
dc.description.abstractMagnetic flux erosion by magnetic reconnection occurs at the front of at least some magnetic clouds (MCs). We first investigate how erosion influences the geo‐effectiveness of MCs in a general sense and using a south‐north magnetic polarity MC observed on 18–20 October 1995. Although the magnetic shear at its front may not be known during propagation, measurements at 1 AU show signatures of local reconnection. Using a standard MC model, an empirical model of the geomagnetic response ( Dst ), and an observational estimate of the magnetic flux erosion, we find that the strength of the observed ensuing storm was ~30% lower than if no erosion had occurred. We then discuss the interplay between adiabatic compression and magnetic erosion at the front of MCs. We conclude that the most geo‐effective configuration for a south‐north polarity MC is to be preceded by a solar wind with southward IMF. This stems not only from the formation of a geo‐effective sheath ahead of it but also from the adiabatic compression and reduced (or lack thereof) magnetic erosion which constructively conspire for the structure to be more geo‐effective. Finally, assuming simple semiempirical and theoretical Alfvén speed profiles expected from expansion to 1 AU, we provide first‐order estimates of the erosion process radial evolution. We find that the expected reconnection rates during propagation allow for significant erosion, on the order of those reported. Calculations also suggest that most of the erosion should occur in the inner heliosphere, and up to ~50% may yet occur beyond Mercury's orbit.en_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCoronal Mass Ejectionen_US
dc.subject.otherMagnetic Reconnectionen_US
dc.subject.otherMagnetic Clouden_US
dc.subject.otherGeo‐Effectivenessen_US
dc.subject.otherErosionen_US
dc.titleGeo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnectionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/106123/1/jgra50756.pdf
dc.identifier.doi10.1002/2013JA019154en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceOsherovich, V. A., C. J. Farrugia, and L. F. Burlaga ( 1993 ), Dynamics of aging magnetic clouds, Adv. Space Res., 13 ( 6 ), 57 – 62.en_US
dc.identifier.citedreferenceMariani, F., and F. M. Neubauer ( 1990 ), The interplanetary magnetic field, in Physics of the Inner Heliosphere, vol. I, edited by R. Schwenn and E. Marsch, pp. 183, Springer, New York.en_US
dc.identifier.citedreferenceMcComas, D. J., J. T. Gosling, D. Winterhalter, and E. J. Smith ( 1988 ), Interplanetary magnetic field draping about fast coronal mass ejecta in the outer heliosphere, J. Geophys. Res., 93, 2519 – 2526, doi: 10.1029/JA093iA04p02519.en_US
dc.identifier.citedreferenceMöstl, C., C. Miklenic, C. J. Farrugia, M. Temmer, A. Veronig, A. B. Galvin, and H. K. Biernat ( 2008 ), Two‐spacecraft reconstruction of a magnetic cloud and comparison to its solar source, Ann. Geophys., 26, 3139 – 3152, doi: 10.5194/angeo‐26‐3139‐2008.en_US
dc.identifier.citedreferenceMozer, F. S., and A. Retinò ( 2007 ), Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements, J. Geophys. Res., 112, A10206, doi: 10.1029/2007JA012406.en_US
dc.identifier.citedreferenceMöstl, C., M. Temmer, T. Rollett, C. J. Farrugia, Y. Liu, A. M. Veronig, M. Leitner, A. B. Galvin, and H. K. Biernat ( 2010 ), STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010, Geophys. Res. Lett., 37, L24103, doi: 10.1029/2010GL045175.en_US
dc.identifier.citedreferenceMulligan, T., and C. T. Russell ( 2001 ), Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrical symmetric versus nonsymmetric topologies, J. Geophys. Res., 106, 10,581 – 10,596.en_US
dc.identifier.citedreferenceMulligan, T., C. T. Russell, and J. G. Luhmann ( 1998 ), Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res. Lett., 25, 2959 – 2962.en_US
dc.identifier.citedreferenceO'Brien, T. P., and R. L. McPherron ( 2000 ), An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707 – 7719.en_US
dc.identifier.citedreferenceOwens, M. J. ( 2006 ), Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations, J. Geophys. Res., 111, A12109, doi: 10.1029/2006JA011903.en_US
dc.identifier.citedreferenceOwens, M. J., P. Démoulin, N. P. Savani, B. Lavraud, and A. Ruffenach ( 2012 ), Implications of non‐cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux‐rope events, Sol. Phys., 278 ( 2 ), 435 – 446, doi: 10.1007/s11207‐012‐9939‐2.en_US
dc.identifier.citedreferencePhan, T. D., et al. ( 2006 ), A magnetic reconnection X‐line extending more than 390 Earth radii in the solar wind, Nature, 439 ( 7073 ), 175 – 178, doi: 10.1038/nature04393.en_US
dc.identifier.citedreferencePhan, T. D., J. T. Gosling, G. Paschmann, C. Pasma, J. F. Drake, M. Øieroset, D. Larson, R. P. Lin, and M. S. Davis ( 2010 ), The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from solar wind observations, Astrophys. J. Lett., 719, L199 – L203, doi: 10.1088/2041‐8205/719/2/L199.en_US
dc.identifier.citedreferenceRouillard, P., B. Lavraud, N. R. Sheeley, J. A. Davies, L. F. Burlaga, N. P. Savani, C. Jacquey, and R. J. Forsyth ( 2010 ), White light and in situ comparison of a forming merged interaction region, Astrophys. J., 719 ( 2 ), 1385 – 1392, doi: 10.1088/0004‐637X/719/2/1385.en_US
dc.identifier.citedreferenceRuffenach, A., et al. ( 2012 ), Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 117, A09101, doi: 10.1029/2012JA017624.en_US
dc.identifier.citedreferenceSavani, N. P., M. J. Owens, A. P. Rouillard, R. J. Forsyth, and J. A. Davies ( 2010 ), Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind, Astrophys. J. Lett., 714 ( 1 ), L128 – L132.en_US
dc.identifier.citedreferenceSchmidt, J. M., and P. J. Cargill ( 2003 ), Magnetic reconnection between a magnetic cloud and the solar wind magnetic field, J. Geophys. Res., 108 ( A1 ), 1023, doi: 10.1029/2002JA009325.en_US
dc.identifier.citedreferenceSchwenn, R. ( 1990 ), Large‐scale structure of the interplanetary medium, in Physics of the Inner Heliosphere, vol. I, edited by R. Schwenn and E. Marsch, pp. 99, Springer, New York.en_US
dc.identifier.citedreferenceShiota, D., K. Kusano, T. Miyoshi, and K. Shibata ( 2010 ), Magnetohydrodynamic modeling for a formation process of coronal mass ejections: Interaction between an ejecting flux rope and an ambient field, Astrophys. J., 718, 1305 – 1314, doi: 10.1088/0004‐637X/718/2/1305.en_US
dc.identifier.citedreferenceSiscoe, G., and D. Odstrcil ( 2008 ), Ways in which ICME sheaths differ from magnetosheaths, J. Geophys. Res., 113, A00B07, doi: 10.1029/2008JA013142.en_US
dc.identifier.citedreferenceSwisdak, M., B. N. Rogers, J. F. Drake, and M. A. Shay ( 2003 ), Diamagnetic suppression of component magnetic reconnection at the magnetopause, J. Geophys. Res., 108 ( A5 ), 1218, doi: 10.1029/2002JA009726.en_US
dc.identifier.citedreferenceSwisdak, M., M. Opher, J. F. Drake, and F. Alouani Bibi ( 2010 ), The vector direction of the interstellar magnetic field outside the heliosphere, Astrophys. J., 710, doi: 10.1088/0004‐637X/710/2/1769.en_US
dc.identifier.citedreferenceTaubenschuss, U., N. V. Erkaev, H. K. Biernat, C. J. Farrugia, C. Möstl, and U. V. Amerstorfer ( 2010 ), The role of magnetic handedness in magnetic cloud propagation, Ann. Geophys., 28 ( 5 ), 1075 – 1100, doi: 10.5194/angeo‐28‐1075‐2010.en_US
dc.identifier.citedreferenceWang, Y., F. Wei, X. Feng, S. Zhang, P. Zuo, and T. Sun ( 2010 ), Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer, Phys. Rev. Lett., 105, 195,007, doi: 10.1103/PhysRevLett.105.195007.en_US
dc.identifier.citedreferenceZhang, G., and L. F. Burlaga ( 1988 ), Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases, J. Geophys. Res., 93, 2511 – 2518.en_US
dc.identifier.citedreferenceAguado, J., C. Cid, E. Saiz, and Y. Cerrato ( 2010 ), Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms, J. Geophys. Res., 115, A07220, doi: 10.1029/2009JA014658.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. Hesse ( 2007 ), The reconnection of magnetic fields between plasmas with different densities: Scaling relations, Phys. Plasmas, 14, 102,309, doi: 10.1063/1.2772619.en_US
dc.identifier.citedreferenceBurton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204 – 4214.en_US
dc.identifier.citedreferenceCassak, P. A., and M. A. Shay ( 2007 ), Scaling of asymmetric magnetic reconnection: General theory and collisional simulations, Phys. Plasmas, 14, 102,114, doi: 10.1063/1.2795630.en_US
dc.identifier.citedreferenceCollier, M. R., et al. ( 2001 ), Reconnection remnants in the magnetic cloud of October 18–19, 1995: A shock, monochromatic wave, heat flux dropout, and energetic ion beam, J. Geophys. Res., 106, 15,985 – 16,000, doi: 10.1029/2000JA000101.en_US
dc.identifier.citedreferenceDasso, S., D. Gómez, and C. H. Mandrini ( 2002 ), Ring current decay rates of magnetic storms: A statistical study from 1957 to 1998, J. Geophys. Res., 107 ( A5 ), 1059, doi: 10.1029/2000JA000430.en_US
dc.identifier.citedreferenceDasso, S., C. H. Mandrini, P. Démoulin, and M. L. Luoni ( 2006 ), A new model‐independent method to compute magnetic helicity in magnetic clouds, Astron. Astrophys., 455, 349 – 359.en_US
dc.identifier.citedreferenceDasso, S., M. S. Nakwacki, P. Demoulin, and C. H. Mandrini ( 2007 ), Progressive transformation of a flux rope to an ICME, Sol. Phys., 244 ( 1–2 ), 115 – 137, doi: 10.1007/s11207‐007‐9034‐2.en_US
dc.identifier.citedreferenceDavis, M. S., T. D. Phan, J. T. Gosling, and R. M. Skoug ( 2006 ), Detection of oppositely directed reconnection jets in a solar wind current sheet, Geophys. Res. Lett., 33, L19102, doi: 10.1029/2006GL026735.en_US
dc.identifier.citedreferenceDémoulin, P., and S. Dasso ( 2009 ), Causes and consequences of magnetic cloud expansion, Astron. Astrophys., 498, 551 – 566.en_US
dc.identifier.citedreferenceEriksson, S., et al. ( 2009 ), Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts, J. Geophys. Res., 114, A07103, doi: 10.1029/2008JA013990.en_US
dc.identifier.citedreferenceEvans, R. M., M. Opher, W. B. Manchester IV, and T. I. Gombosi ( 2008 ), Alfvén profile in the lower corona: Implications for shock formation, Astrophys. J., 687 ( 2 ), 1355 – 1362.en_US
dc.identifier.citedreferenceFarrugia, C. J., L. F. Burlaga, V. Osherovich, I. G. Richardson, M. P. Freeman, R. P. Lepping, and A. Lazarus ( 1993 ), A study of an expanding interplanetary magnetic cloud and its interaction with the Earth's magnetosphere: The interplanetary aspect, J. Geophys. Res., 98, 7621 – 7632.en_US
dc.identifier.citedreferenceFarrugia, C. J., et al. ( 2001 ), A reconnection layer associated with a magnetic cloud, Adv. Space Res., 28 ( 5 ), 759 – 764, doi: 10.1016/S0273‐1177(01)00529‐4.en_US
dc.identifier.citedreferenceFenrich, F. R., and J. G. Luhmann ( 1998 ), Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 25, 2999 – 3002.en_US
dc.identifier.citedreferenceGosling, J. T. ( 1993 ), The solar flare myth, J. Geophys. Res., 98, 18,937 – 18,949, doi: 10.1029/93JA01896.en_US
dc.identifier.citedreferenceGosling, J. T., and A. Szabo ( 2008 ), Bifurcated current sheets produced by magnetic reconnection in the solar wind, J. Geophys. Res., 113, A10103, doi: 10.1029/2008JA013473.en_US
dc.identifier.citedreferenceGosling, J. T., S. J. Bame, D. J. McComas, and J. L. Phillips ( 1990 ), Coronal mass ejections and large geomagnetic storms, J. Geophys. Res., 17, 901 – 904.en_US
dc.identifier.citedreferenceGosling, J. T., R. M. Skoug, D. J. McComas, and C. W. Smith ( 2005 ), Direct evidence for magnetic reconnection in the solar wind near 1 AU, J. Geophys. Res., 110, A01107, doi: 10.1029/2004JA010809.en_US
dc.identifier.citedreferenceGosling, J. T., S. Eriksson, and R. Schwenn ( 2006 ), Petschek‐type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios, J. Geophys. Res., 111, A10102, doi: 10.1029/2006JA011863.en_US
dc.identifier.citedreferenceGulisano, A., S. Dasso, C. Mandrini, and P. Démoulin ( 2007 ), Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation, Adv. Space Res., 40, 1881 – 1890, doi: 10.1016/j.asr.2007.09.001.en_US
dc.identifier.citedreferenceHidalgo, M. A., C. Cid, A. F. Viñas, and J. Sequeiros ( 2002 ), A non‐force‐free approach to the topology of magnetic clouds in the solar wind, J. Geophys. Res., 107 ( A1 ), 1002, doi: 10.1029/2001JA900100.en_US
dc.identifier.citedreferenceHuttunen, K. E. J., S. D. Bale, and C. Salem ( 2008 ), Wind observations of low energy particles within a solar wind reconnection region, Ann. Geophys., 26, 2701 – 2710, doi: 10.5194/angeo‐26‐2701‐2008.en_US
dc.identifier.citedreferenceJanoo, L., et al. ( 1998 ), Field and flow perturbations in the October 18–19, 1995, magnetic cloud, J. Geophys. Res., 103, 17,249 – 17,259, doi: 10.1029/97JA03173.en_US
dc.identifier.citedreferenceKawano, H., and T. Higuchi ( 1995 ), The bootstrap method in space physics: Error estimation for the minimum variance analysis, Geophys. Res. Lett., 22, 307 – 310, doi: 10.1029/94GL02969.en_US
dc.identifier.citedreferenceLarson, D. E., et al. ( 1997 ), Tracing the topology of the October 18–20, 1995, magnetic cloud with ~0.1–10 2 keV electrons, Geophys. Res. Lett., 24, 1911 – 1914.en_US
dc.identifier.citedreferenceLavraud, B., and J. E. Borovsky ( 2008 ), Altered solar wind–magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192.en_US
dc.identifier.citedreferenceLavraud, B., et al. ( 2009 ), Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 R E, Sol. Phys., 256 ( 1–2 ), 379 – 392, doi: 10.1007/s11207‐009‐9341‐x.en_US
dc.identifier.citedreferenceLeitner, M., C. J. Farrugia, C. Möstl, K. W. Ogilvie, A. B. Galvin, R. Schwenn, and H. K. Biernat ( 2007 ), Consequences of the force‐free model of magnetic clouds for their heliospheric evolution, J. Geophys. Res., 112, A06113, doi: 10.1029/2006JA011940.en_US
dc.identifier.citedreferenceLepping, R. P., et al. ( 1997 ), The Wind magnetic cloud and events of October 18–20, 1995: Interplanetary properties and as triggers for geomagnetic activity, J. Geophys. Res., 102, 14,049 – 14,063, doi: 10.1029/97JA00272.en_US
dc.identifier.citedreferenceLundquist, S. ( 1950 ), Magneto‐hydrostatic fields, Ark. Fys., 2 ( 35 ), 361 – 365.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.