Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection
dc.contributor.author | Lavraud, Benoit | en_US |
dc.contributor.author | Ruffenach, Alexis | en_US |
dc.contributor.author | Rouillard, Alexis P. | en_US |
dc.contributor.author | Kajdic, Primoz | en_US |
dc.contributor.author | Manchester, Ward B. | en_US |
dc.contributor.author | Lugaz, Noé | en_US |
dc.date.accessioned | 2014-03-05T18:19:07Z | |
dc.date.available | 2015-03-02T14:35:34Z | en_US |
dc.date.issued | 2014-01 | en_US |
dc.identifier.citation | Lavraud, Benoit; Ruffenach, Alexis; Rouillard, Alexis P.; Kajdic, Primoz; Manchester, Ward B.; Lugaz, Noé (2014). "Geoâ effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection." Journal of Geophysical Research: Space Physics 119(1): 26-35. | en_US |
dc.identifier.issn | 2169-9380 | en_US |
dc.identifier.issn | 2169-9402 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/106123 | |
dc.description.abstract | Magnetic flux erosion by magnetic reconnection occurs at the front of at least some magnetic clouds (MCs). We first investigate how erosion influences the geo‐effectiveness of MCs in a general sense and using a south‐north magnetic polarity MC observed on 18–20 October 1995. Although the magnetic shear at its front may not be known during propagation, measurements at 1 AU show signatures of local reconnection. Using a standard MC model, an empirical model of the geomagnetic response ( Dst ), and an observational estimate of the magnetic flux erosion, we find that the strength of the observed ensuing storm was ~30% lower than if no erosion had occurred. We then discuss the interplay between adiabatic compression and magnetic erosion at the front of MCs. We conclude that the most geo‐effective configuration for a south‐north polarity MC is to be preceded by a solar wind with southward IMF. This stems not only from the formation of a geo‐effective sheath ahead of it but also from the adiabatic compression and reduced (or lack thereof) magnetic erosion which constructively conspire for the structure to be more geo‐effective. Finally, assuming simple semiempirical and theoretical Alfvén speed profiles expected from expansion to 1 AU, we provide first‐order estimates of the erosion process radial evolution. We find that the expected reconnection rates during propagation allow for significant erosion, on the order of those reported. Calculations also suggest that most of the erosion should occur in the inner heliosphere, and up to ~50% may yet occur beyond Mercury's orbit. | en_US |
dc.publisher | Springer | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Coronal Mass Ejection | en_US |
dc.subject.other | Magnetic Reconnection | en_US |
dc.subject.other | Magnetic Cloud | en_US |
dc.subject.other | Geo‐Effectiveness | en_US |
dc.subject.other | Erosion | en_US |
dc.title | Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/106123/1/jgra50756.pdf | |
dc.identifier.doi | 10.1002/2013JA019154 | en_US |
dc.identifier.source | Journal of Geophysical Research: Space Physics | en_US |
dc.identifier.citedreference | Osherovich, V. A., C. J. Farrugia, and L. F. Burlaga ( 1993 ), Dynamics of aging magnetic clouds, Adv. Space Res., 13 ( 6 ), 57 – 62. | en_US |
dc.identifier.citedreference | Mariani, F., and F. M. Neubauer ( 1990 ), The interplanetary magnetic field, in Physics of the Inner Heliosphere, vol. I, edited by R. Schwenn and E. Marsch, pp. 183, Springer, New York. | en_US |
dc.identifier.citedreference | McComas, D. J., J. T. Gosling, D. Winterhalter, and E. J. Smith ( 1988 ), Interplanetary magnetic field draping about fast coronal mass ejecta in the outer heliosphere, J. Geophys. Res., 93, 2519 – 2526, doi: 10.1029/JA093iA04p02519. | en_US |
dc.identifier.citedreference | Möstl, C., C. Miklenic, C. J. Farrugia, M. Temmer, A. Veronig, A. B. Galvin, and H. K. Biernat ( 2008 ), Two‐spacecraft reconstruction of a magnetic cloud and comparison to its solar source, Ann. Geophys., 26, 3139 – 3152, doi: 10.5194/angeo‐26‐3139‐2008. | en_US |
dc.identifier.citedreference | Mozer, F. S., and A. Retinò ( 2007 ), Quantitative estimates of magnetic field reconnection properties from electric and magnetic field measurements, J. Geophys. Res., 112, A10206, doi: 10.1029/2007JA012406. | en_US |
dc.identifier.citedreference | Möstl, C., M. Temmer, T. Rollett, C. J. Farrugia, Y. Liu, A. M. Veronig, M. Leitner, A. B. Galvin, and H. K. Biernat ( 2010 ), STEREO and Wind observations of a fast ICME flank triggering a prolonged geomagnetic storm on 5–7 April 2010, Geophys. Res. Lett., 37, L24103, doi: 10.1029/2010GL045175. | en_US |
dc.identifier.citedreference | Mulligan, T., and C. T. Russell ( 2001 ), Multispacecraft modeling of the flux rope structure of interplanetary coronal mass ejections: Cylindrical symmetric versus nonsymmetric topologies, J. Geophys. Res., 106, 10,581 – 10,596. | en_US |
dc.identifier.citedreference | Mulligan, T., C. T. Russell, and J. G. Luhmann ( 1998 ), Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res. Lett., 25, 2959 – 2962. | en_US |
dc.identifier.citedreference | O'Brien, T. P., and R. L. McPherron ( 2000 ), An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707 – 7719. | en_US |
dc.identifier.citedreference | Owens, M. J. ( 2006 ), Magnetic cloud distortion resulting from propagation through a structured solar wind: Models and observations, J. Geophys. Res., 111, A12109, doi: 10.1029/2006JA011903. | en_US |
dc.identifier.citedreference | Owens, M. J., P. Démoulin, N. P. Savani, B. Lavraud, and A. Ruffenach ( 2012 ), Implications of non‐cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux‐rope events, Sol. Phys., 278 ( 2 ), 435 – 446, doi: 10.1007/s11207‐012‐9939‐2. | en_US |
dc.identifier.citedreference | Phan, T. D., et al. ( 2006 ), A magnetic reconnection X‐line extending more than 390 Earth radii in the solar wind, Nature, 439 ( 7073 ), 175 – 178, doi: 10.1038/nature04393. | en_US |
dc.identifier.citedreference | Phan, T. D., J. T. Gosling, G. Paschmann, C. Pasma, J. F. Drake, M. Øieroset, D. Larson, R. P. Lin, and M. S. Davis ( 2010 ), The dependence of magnetic reconnection on plasma β and magnetic shear: Evidence from solar wind observations, Astrophys. J. Lett., 719, L199 – L203, doi: 10.1088/2041‐8205/719/2/L199. | en_US |
dc.identifier.citedreference | Rouillard, P., B. Lavraud, N. R. Sheeley, J. A. Davies, L. F. Burlaga, N. P. Savani, C. Jacquey, and R. J. Forsyth ( 2010 ), White light and in situ comparison of a forming merged interaction region, Astrophys. J., 719 ( 2 ), 1385 – 1392, doi: 10.1088/0004‐637X/719/2/1385. | en_US |
dc.identifier.citedreference | Ruffenach, A., et al. ( 2012 ), Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 117, A09101, doi: 10.1029/2012JA017624. | en_US |
dc.identifier.citedreference | Savani, N. P., M. J. Owens, A. P. Rouillard, R. J. Forsyth, and J. A. Davies ( 2010 ), Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind, Astrophys. J. Lett., 714 ( 1 ), L128 – L132. | en_US |
dc.identifier.citedreference | Schmidt, J. M., and P. J. Cargill ( 2003 ), Magnetic reconnection between a magnetic cloud and the solar wind magnetic field, J. Geophys. Res., 108 ( A1 ), 1023, doi: 10.1029/2002JA009325. | en_US |
dc.identifier.citedreference | Schwenn, R. ( 1990 ), Large‐scale structure of the interplanetary medium, in Physics of the Inner Heliosphere, vol. I, edited by R. Schwenn and E. Marsch, pp. 99, Springer, New York. | en_US |
dc.identifier.citedreference | Shiota, D., K. Kusano, T. Miyoshi, and K. Shibata ( 2010 ), Magnetohydrodynamic modeling for a formation process of coronal mass ejections: Interaction between an ejecting flux rope and an ambient field, Astrophys. J., 718, 1305 – 1314, doi: 10.1088/0004‐637X/718/2/1305. | en_US |
dc.identifier.citedreference | Siscoe, G., and D. Odstrcil ( 2008 ), Ways in which ICME sheaths differ from magnetosheaths, J. Geophys. Res., 113, A00B07, doi: 10.1029/2008JA013142. | en_US |
dc.identifier.citedreference | Swisdak, M., B. N. Rogers, J. F. Drake, and M. A. Shay ( 2003 ), Diamagnetic suppression of component magnetic reconnection at the magnetopause, J. Geophys. Res., 108 ( A5 ), 1218, doi: 10.1029/2002JA009726. | en_US |
dc.identifier.citedreference | Swisdak, M., M. Opher, J. F. Drake, and F. Alouani Bibi ( 2010 ), The vector direction of the interstellar magnetic field outside the heliosphere, Astrophys. J., 710, doi: 10.1088/0004‐637X/710/2/1769. | en_US |
dc.identifier.citedreference | Taubenschuss, U., N. V. Erkaev, H. K. Biernat, C. J. Farrugia, C. Möstl, and U. V. Amerstorfer ( 2010 ), The role of magnetic handedness in magnetic cloud propagation, Ann. Geophys., 28 ( 5 ), 1075 – 1100, doi: 10.5194/angeo‐28‐1075‐2010. | en_US |
dc.identifier.citedreference | Wang, Y., F. Wei, X. Feng, S. Zhang, P. Zuo, and T. Sun ( 2010 ), Energetic electrons associated with magnetic reconnection in the magnetic cloud boundary layer, Phys. Rev. Lett., 105, 195,007, doi: 10.1103/PhysRevLett.105.195007. | en_US |
dc.identifier.citedreference | Zhang, G., and L. F. Burlaga ( 1988 ), Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases, J. Geophys. Res., 93, 2511 – 2518. | en_US |
dc.identifier.citedreference | Aguado, J., C. Cid, E. Saiz, and Y. Cerrato ( 2010 ), Hyperbolic decay of the Dst index during the recovery phase of intense geomagnetic storms, J. Geophys. Res., 115, A07220, doi: 10.1029/2009JA014658. | en_US |
dc.identifier.citedreference | Borovsky, J. E., and M. Hesse ( 2007 ), The reconnection of magnetic fields between plasmas with different densities: Scaling relations, Phys. Plasmas, 14, 102,309, doi: 10.1063/1.2772619. | en_US |
dc.identifier.citedreference | Burton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204 – 4214. | en_US |
dc.identifier.citedreference | Cassak, P. A., and M. A. Shay ( 2007 ), Scaling of asymmetric magnetic reconnection: General theory and collisional simulations, Phys. Plasmas, 14, 102,114, doi: 10.1063/1.2795630. | en_US |
dc.identifier.citedreference | Collier, M. R., et al. ( 2001 ), Reconnection remnants in the magnetic cloud of October 18–19, 1995: A shock, monochromatic wave, heat flux dropout, and energetic ion beam, J. Geophys. Res., 106, 15,985 – 16,000, doi: 10.1029/2000JA000101. | en_US |
dc.identifier.citedreference | Dasso, S., D. Gómez, and C. H. Mandrini ( 2002 ), Ring current decay rates of magnetic storms: A statistical study from 1957 to 1998, J. Geophys. Res., 107 ( A5 ), 1059, doi: 10.1029/2000JA000430. | en_US |
dc.identifier.citedreference | Dasso, S., C. H. Mandrini, P. Démoulin, and M. L. Luoni ( 2006 ), A new model‐independent method to compute magnetic helicity in magnetic clouds, Astron. Astrophys., 455, 349 – 359. | en_US |
dc.identifier.citedreference | Dasso, S., M. S. Nakwacki, P. Demoulin, and C. H. Mandrini ( 2007 ), Progressive transformation of a flux rope to an ICME, Sol. Phys., 244 ( 1–2 ), 115 – 137, doi: 10.1007/s11207‐007‐9034‐2. | en_US |
dc.identifier.citedreference | Davis, M. S., T. D. Phan, J. T. Gosling, and R. M. Skoug ( 2006 ), Detection of oppositely directed reconnection jets in a solar wind current sheet, Geophys. Res. Lett., 33, L19102, doi: 10.1029/2006GL026735. | en_US |
dc.identifier.citedreference | Démoulin, P., and S. Dasso ( 2009 ), Causes and consequences of magnetic cloud expansion, Astron. Astrophys., 498, 551 – 566. | en_US |
dc.identifier.citedreference | Eriksson, S., et al. ( 2009 ), Asymmetric shear flow effects on magnetic field configuration within oppositely directed solar wind reconnection exhausts, J. Geophys. Res., 114, A07103, doi: 10.1029/2008JA013990. | en_US |
dc.identifier.citedreference | Evans, R. M., M. Opher, W. B. Manchester IV, and T. I. Gombosi ( 2008 ), Alfvén profile in the lower corona: Implications for shock formation, Astrophys. J., 687 ( 2 ), 1355 – 1362. | en_US |
dc.identifier.citedreference | Farrugia, C. J., L. F. Burlaga, V. Osherovich, I. G. Richardson, M. P. Freeman, R. P. Lepping, and A. Lazarus ( 1993 ), A study of an expanding interplanetary magnetic cloud and its interaction with the Earth's magnetosphere: The interplanetary aspect, J. Geophys. Res., 98, 7621 – 7632. | en_US |
dc.identifier.citedreference | Farrugia, C. J., et al. ( 2001 ), A reconnection layer associated with a magnetic cloud, Adv. Space Res., 28 ( 5 ), 759 – 764, doi: 10.1016/S0273‐1177(01)00529‐4. | en_US |
dc.identifier.citedreference | Fenrich, F. R., and J. G. Luhmann ( 1998 ), Geomagnetic response to magnetic clouds of different polarity, Geophys. Res. Lett., 25, 2999 – 3002. | en_US |
dc.identifier.citedreference | Gosling, J. T. ( 1993 ), The solar flare myth, J. Geophys. Res., 98, 18,937 – 18,949, doi: 10.1029/93JA01896. | en_US |
dc.identifier.citedreference | Gosling, J. T., and A. Szabo ( 2008 ), Bifurcated current sheets produced by magnetic reconnection in the solar wind, J. Geophys. Res., 113, A10103, doi: 10.1029/2008JA013473. | en_US |
dc.identifier.citedreference | Gosling, J. T., S. J. Bame, D. J. McComas, and J. L. Phillips ( 1990 ), Coronal mass ejections and large geomagnetic storms, J. Geophys. Res., 17, 901 – 904. | en_US |
dc.identifier.citedreference | Gosling, J. T., R. M. Skoug, D. J. McComas, and C. W. Smith ( 2005 ), Direct evidence for magnetic reconnection in the solar wind near 1 AU, J. Geophys. Res., 110, A01107, doi: 10.1029/2004JA010809. | en_US |
dc.identifier.citedreference | Gosling, J. T., S. Eriksson, and R. Schwenn ( 2006 ), Petschek‐type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios, J. Geophys. Res., 111, A10102, doi: 10.1029/2006JA011863. | en_US |
dc.identifier.citedreference | Gulisano, A., S. Dasso, C. Mandrini, and P. Démoulin ( 2007 ), Estimation of the bias of the minimum variance technique in the determination of magnetic clouds global quantities and orientation, Adv. Space Res., 40, 1881 – 1890, doi: 10.1016/j.asr.2007.09.001. | en_US |
dc.identifier.citedreference | Hidalgo, M. A., C. Cid, A. F. Viñas, and J. Sequeiros ( 2002 ), A non‐force‐free approach to the topology of magnetic clouds in the solar wind, J. Geophys. Res., 107 ( A1 ), 1002, doi: 10.1029/2001JA900100. | en_US |
dc.identifier.citedreference | Huttunen, K. E. J., S. D. Bale, and C. Salem ( 2008 ), Wind observations of low energy particles within a solar wind reconnection region, Ann. Geophys., 26, 2701 – 2710, doi: 10.5194/angeo‐26‐2701‐2008. | en_US |
dc.identifier.citedreference | Janoo, L., et al. ( 1998 ), Field and flow perturbations in the October 18–19, 1995, magnetic cloud, J. Geophys. Res., 103, 17,249 – 17,259, doi: 10.1029/97JA03173. | en_US |
dc.identifier.citedreference | Kawano, H., and T. Higuchi ( 1995 ), The bootstrap method in space physics: Error estimation for the minimum variance analysis, Geophys. Res. Lett., 22, 307 – 310, doi: 10.1029/94GL02969. | en_US |
dc.identifier.citedreference | Larson, D. E., et al. ( 1997 ), Tracing the topology of the October 18–20, 1995, magnetic cloud with ~0.1–10 2 keV electrons, Geophys. Res. Lett., 24, 1911 – 1914. | en_US |
dc.identifier.citedreference | Lavraud, B., and J. E. Borovsky ( 2008 ), Altered solar wind–magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192. | en_US |
dc.identifier.citedreference | Lavraud, B., et al. ( 2009 ), Observation of a complex solar wind reconnection exhaust from spacecraft separated by over 1800 R E, Sol. Phys., 256 ( 1–2 ), 379 – 392, doi: 10.1007/s11207‐009‐9341‐x. | en_US |
dc.identifier.citedreference | Leitner, M., C. J. Farrugia, C. Möstl, K. W. Ogilvie, A. B. Galvin, R. Schwenn, and H. K. Biernat ( 2007 ), Consequences of the force‐free model of magnetic clouds for their heliospheric evolution, J. Geophys. Res., 112, A06113, doi: 10.1029/2006JA011940. | en_US |
dc.identifier.citedreference | Lepping, R. P., et al. ( 1997 ), The Wind magnetic cloud and events of October 18–20, 1995: Interplanetary properties and as triggers for geomagnetic activity, J. Geophys. Res., 102, 14,049 – 14,063, doi: 10.1029/97JA00272. | en_US |
dc.identifier.citedreference | Lundquist, S. ( 1950 ), Magneto‐hydrostatic fields, Ark. Fys., 2 ( 35 ), 361 – 365. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.